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Abstract

In our paper “Dynamic Mechanism Design with Hidden Income and Hidden Ac-
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as well as proofs for all propositions.
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1 Introduction

In “Dynamic Mechanism Design with Hidden Income and Hidden Actions,” we consider
a class of dynamic principal-agent problems in which the agent receives unobserved in-
come shocks and can take unobserved actions which influence future income realizations.
The principal wants to provide optimal incentive-compatible insurance against the in-
come shocks. We formulate a general planning problem allowing for history dependence
and unrestricted communication, and show how this problem can be reduced to a recur-
sive version with direct mechanisms and vectors of utility promises as the state variable.
In this Technical Appendix we provide the full derivations of all recursive formulations
provided in the paper, as well as proofs for all propositions. For ease of exposition, this
document is self-contained and repeats the general setup and all programs contained in
the original paper.

In Section 2 we introduce the economic environment that underlies our mechanism de-
sign problem, and formulate a general planning problem with unrestricted communica-
tion and full history dependence. In Section 3, we invoke the revelation principle to re-
formulate the planning problem, using direct message spaces and enforcing truth-telling
and obedience. We then provide a recursive formulation of this problem with a vector
of utility promises as the state variable. In Sections 4, 5, and 6, we develop alternative
formulations which allow the planner to specify behavior off the equilibrium path. All
proofs are contained in the mathematical appendix.

2 The Model

In the following sections we develop a number of recursive formulations for a general
mechanism design problem. For maximum generality, when deriving the different recur-
sive formulations we concentrate on the case of infinitely many periods with unobserved
endowments and actions in every period. With little change in notation, the formula-
tions can be adapted to models with finitely many periods and/or partially observable
endowments and actions.
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2.1 Physical Setup

The physical setup is identical for all programs that we consider. At the beginning of
each period the agent receives an income or endowment e from a finite set E. The income
cannot be observed by the planner. Then the planner gives a transfer � from a finite set T
to the agent. A positive transfer can be interpreted as an indemnity and negative transfer
as a premium. At the end of the period, the agent takes an action a from a finite set
A. Again, the action is unobservable for the planner. In most examples below we will
concentrate on positive a and interpret that as storage or investment, but without any
changes in the setup we could also allow for a to be negative, which can be interpreted as
borrowing. The interpretation is the usual small-economy one, with unrestricted access
to outside credit markets. The agent consumes the amount e + � � a and enjoys period
utility u(e + � � a). Our methods do not require any specific assumptions on the utility
function u(�), apart from it being real-valued.

The action a influences the probability distribution over the income or endowment in the
next period. Probability p(eja) denotes the probability of endowment e if the agent took
action a in the previous period. The word “endowment” is thus a misnomer as income
next period is endogenous, a function of investment or unobserved credit-market activity.
It is only in the initial period that the probability p(e) of endowment e does not depend on
any prior actions. For tractability, and consistent with the classic formulation of a moral-
hazard problem, we assume that all states occur with positive probability, regardless of
the action:

Assumption 1 The probability distribution over the endowment e satisfies p(eja) > 0 for all
e 2 E, all a 2 A.

Otherwise, we place no restrictions on the investment technology. Apart from physical
transactions, there is also communication taking place between the agent and the plan-
ner. We do not place any prior restrictions on this communication, in order not to limit
the attainable outcomes. At a minimum, the agent has to be able send a signal about his
beginning-of-period endowment, and the planner has to be able to send a recommenda-
tion for the investment or unobserved action.

In what follows Q is the discount factor of the planner, and � is the discount factor of
the agent. The planner is risk-neutral and minimizes the expected discounted transfer,
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while the agent maximizes expected discounted utility. The discount factor Q is given by
Q = 1

1+r
, where r is taken to be the outside credit-market interest rate for borrowers and

lenders in this small open economy. We assume that both discount factors are less than
one so that utility is finite and our problem is well defined.

Assumption 2 The discount factors Q and � of the planner and the agent satisfy 0 < Q < 1 and
0 < � < 1.

When there are only finitely many periods, we only require that both discount factors be
bigger than zero, because utility will still be well defined.

While we formulate the model in terms of a single agent, another powerful interpretation
is that there is a continuum of agents with mass equal to unity. In that case, the probability
of an event represents the fractions in the population experiencing that event. Here the
planner is merely a programming device to compute an optimal allocation: when the
discounted surplus of the continuum of agents is zero, then we have attained a Pareto
optimum.

2.2 The Planning Problem

We now want to formulate the Pareto problem of the planner maximizing surplus subject
to providing reservation utility to the agent. Since the planner does not have any infor-
mation on endowments and actions of the agent, we need to take a stand on what kind
of communication is possible between planner and agent. In order not to impose any
constraints from the outset, we start with a general communication game with arbitrary
message spaces and full history-dependence. At the beginning of each period the agent
realizes an endowment e. Then the agent sends a message or report m1 to the planner,
where m1 is in a finite set M1. Given the message, the planner assigns a transfer � 2 T ,
possibly at random. Then the agent sends a second message m2, where m2 is in some
finite set M2. The planner responds by sending a message or recommendation m3 2 M3

to the agent, and M3 is finite as well. Finally, the agent takes an action a 2 A. In the direct
mechanisms that we will introduce later, m1 and m2 will be reports on the endowment e,
while m3 will be a recommendation for the action a.1

1It is customary in the literature to start with a direct mechanism from the outset, assuming that the
revelation principle holds. We start with the more general setup, since we are going to derive two different
direct mechanisms and need to show that they are equivalent to each other and to the more general setup.
Specifically, Program 2 relies on the presence of the second report m2.
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Period t Period t + 1

et m1t �t m2t m3t at u(et + �t � at) et+1

Figure 1: The Sequence of Events and Messages in Period t

We will use ht to denote the realized endowment and all choices by planner and agent in
period t :

ht � fet; m1t; �t; m2t; m3t; atg:

We denote the space of all possible ht by Ht. The history of up to time t will be denoted
by h

t:
h
t
� fh�1; h0; h1; : : : ; htg:

Here t = 0 is the initial date. The set of all possible histories up to time t is denoted by H t

and is thus given by:
H

t
� H�1 �H0 �H1 � : : :�Ht:

At any time t, the agent knows the entire history up to time t � 1. On the other hand,
the planner sees neither the true endowment nor the true action. We will use st and s

t to
denote the part of the history known to the planner. We therefore have

st � fm1t; �t; m2t; m3tg;

where the planner’s history of the game up to time t will be denoted by s
t, and the set St

of all histories up to time t is defined analogously to the set H t above. Since the planner
sees a subset of what the agent sees, the history of the planner is uniquely determined by
the history of the agent. We will therefore write the history of the planner as a function
s
t(ht) of the history h

t of the agent. There is no information present at the beginning of
time, and consequently we define h�1 � s�1 � ;.

The choices by the planner are described by a pair of outcome functions �(�tjm1t; s
t�1)

and �(m3tjm1t; �t; m2t; s
t�1) which map the history up to the last period as known by

the planner and events (messages and transfers) that already occurred in the current
period into a probability distribution over transfer �t and a report m3t. The choices of
the agent are described by a strategy. A strategy consists of a function �(m1tjet; h

t�1)
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which maps the history up to the last period as known by the agent and the endowment
into a probability distribution over the first report m1t, a function �(m2tjet; m1t; �t; h

t�1)

which determines a probability distribution over the second report m2t, and a function
�(atjet; m1t; �t; m2t; m3t; h

t�1) which determines the action.

We use p(htj�; �) to denote the probability of history h
t under a given outcome function

and strategy. The probabilities over histories are defined recursively, given history h
t�1

and action at�1(h
t�1), by:

p(htj�; �) = p(ht�1j�; �) p(etjat�1(h
t�1)) �(m1tjet; h

t�1) �(�tjm1t; s
t�1(ht�1))

�(m2tjet; m1t; �t; h
t�1

) �(m3tjm1t; �t; m2t; s
t�1

(h
t�1

)) �(atjet; m1t; �t; m2t; m3t; h
t�1

):

Also, p(htj�; �; hk) is the conditional probability of history h
t given that history h

k with
k � t occurred, and conditional probabilities are defined analogously.

For a given outcome function � and strategy �, the expected utility of the agent is given
by:

U(�; �) �

1X
t=0

�
t

"X
Ht

p(htj�; �)u(et + �t � at)

#
: (1)

The expression above represents the utility of the agent as of time zero. We will also
require that the agent use a maximizing strategy at all other nodes, even if they occur
with probability zero. The utility of the agent given that history h

k has already been
realized is given by:

U(�; �jhk) �

1X
t=k+1

�
t�1�k

"X
Ht

p(htj�; �; hk)u(et + �t � at)

#
: (2)

We now define an optimal strategy � for a given outcome function � as a strategy that
maximizes the utility of the agent at all nodes. The requirement that the strategy be
utility maximizing can be described by a set of inequality constraints. Specifically, for a
given outcome function �, for any alternative strategy �̂, and any history h

k, an optimal
strategy � has to satisfy:

8�̂; h
k : U(�; �̂jhk) � U(�; �jhk): (3)

Inequality (3) thus imposes or describes optimization from any history h
k on.
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In addition, we also require that the strategy be optimal at any node that starts after an
arbitrary first report in a period is made, i.e., even if in any period k + 1 the first report
was generated by a strategy �̂, it is optimal to revert to � from the second report in period
k+1 on. For any alternative strategy �̂ and any history hk, an optimal strategy � therefore
also has to satisfy:

8�̂; h
k : U(�; �̂jhk)

�

X
hk+1

p(ek+1jh
k) �̂(m1k+1jek+1; h

k) p(�k+1; m2k+1; m3k+1; ak+1jek+1; m1k+1; �; �; h
k)

�
u(ek+1 + �k+1 � ak+1) + �U(�; �jh

k+1
)
�
: (4)

Notice that on the right-hand side the first report m1k+1 is generated by strategy �̂, the
remaining messages, transfers, and actions are generated under � and �, as captured by
the second term p(�j�), and the future is generated by � and � as well. This condition is
not restrictive, since by (3) even without this condition the agent chooses the second re-
port optimally conditional on any first report that occurs with positive probability. The
only additional effect of condition (4) is to impose or describe that the agent chooses the
second report and action optimally even conditional on first reports that occur with zero
probability under �, but could be generated under a counterfactual strategy. Describing
optimal behavior off the equilibrium path will help us later in deriving recursive formu-
lations of the planning problem that can be computed efficiently.

We are now able to provide a formal definition of an optimal strategy:

Definition 1 Given an outcome function �, an optimal strategy � is a strategy such that inequal-
ities (3) and (4) are satisfied for all, k, all hk 2 H

k, and all alternative strategies �̂.

Of course, for hk = h
�1 this condition includes the maximization of expected utility (1) at

time zero.

We imagine the planner as choosing an outcome function and a corresponding optimal
strategy subject to the requirement that the agent realize at least reservation utility, W0:

U(�; �) � W0: (5)

Definition 2 An equilibrium f�; �g is an outcome function � together with a corresponding
optimal strategy � such that (5) holds, i.e., the agent realizes at least his reservation utility. A
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feasible allocation is a probability distribution over endowments, transfers and actions that is
generated by an equilibrium.

The set of equilibria is characterized by the promise-keeping constraint (5), by the opti-
mality conditions (3) and (4), and of course a number of adding-up constraints that ensure
that both outcome function and strategy consist of probability measures. For brevity these
latter constraints are not written explicitly.

The objective function of the planner is:

V (�; �) �

1X
t=0

Q
t

"X
Ht

p(htj�; �)(��t)

#
(6)

When there is a continuum of agents, there is no aggregate uncertainty, and (6) is the
actual surplus of the planner, or equivalently, the surplus of the community as a whole.
In the single-agent interpretation, there is uncertainty about the realization of transfers,
and (6) is the expected surplus. In either case, the planner’s problem is to choose an
equilibrium that maximizes (6). By construction, this will be Pareto optimal. The Pareto
frontier can be traced out by varying reservation utility W0.

Definition 3 An optimal equilibrium is an equilibrium that solves the planner’s problem.

Proposition 1 There are reservation utilities W0 2 R such that an optimal equilibrium exists.

3 Deriving a Recursive Formulation

3.1 The Revelation Principle

Our ultimate aim is to find a computable, recursive formulation of the planning problem.
We begin by showing that without loss of generality we can restrict attention to a direct
mechanism where there is just one message space each for the agent and the planner. The
message space of the agent will be equal to the space of endowments E, and the agent
will be induced to tell the truth. The message space for the planner will be equal to the
space of actions A, and it will be in the interest of the agent to follow the recommended
action. Since we fix the message spaces and require that truth-telling and obedience be
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optimal for the agent, instead of allowing any optimal strategy as before, it has to be
the case that the set of feasible allocations in this setup is no larger than in the general
setup with arbitrary message spaces. The purpose of this section is to show that the set of
feasible allocations is in fact identical. Therefore there is no loss of generality in restricting
attention to truth-telling and obedience from the outset.2

More formally, we consider the planning problem described above under the restriction
that M1 = E and M3 = A. M2 is set to be a singleton, so that the agent does not have an
actual choice over the second report. For simplicity, we will suppress m2 in the notation
below. We can then express the contemporary part of the history of the planner as:

st � fet; �t; atg;

with history s
t up to time t defined as above. Notice that since we are considering the

history of the planner, et is the reported, not necessary actual, endowment, and at is the
recommended action, not necessarily the one actually taken.

As before, the planner chooses an outcome function consisting of probability distributions
over transfers and reports. For notational convenience, we express the outcome function
as the joint probability distribution over combinations of transfer and recommendation.
This is equivalent to choosing marginal probabilities as above. The planner therefore
chooses probabilities �(�t; atjet; st�1) that determine the transfer �t and the recommended
action at as a function of the reported endowment et and the history up to the last period
s
t�1.

We now impose constraints on the outcome function that ensure that the outcome func-
tion together with a specific strategy of the agent, namely truth-telling and obedience,
are an equilibrium. First, the outcome function has to define probability measures. We
require that �(�t; atjet; st�1) � 0 for all transfers, actions, endowments and histories, and
that:

8et; s
t�1 :

X
T;A

�(�t; atjet; s
t�1

) = 1: (7)

Given an outcome function, we define probabilities p(stj�) over histories in the obvious
way, where the notation for � is suppressed on the premise that the agent is honest and

2We still prefer to start from the general setup (as opposed to just assuming that the revelation principle
holds) since we are deriving two different direct mechanisms from the same general setup, and we need to
show that they are equivalent.
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obedient. Given these probabilities, as in (5), the outcome function has to deliver reser-
vation utility W0 to the agent, provided that the agent reports truthfully and takes the
recommended actions:

1X
t=0

�
t

"X
St

p(stj�)u(et + �t � at)

#
� W0: (8)

Finally, it has to be optimal for the agent to tell the truth and follow the recommended
action, so that (3) holds for the outcome function and the maximizing strategy � of the
agent, which is to be truthful and obedient. We write a possible deviation strategy Æ as
a set of functions Æe(ht�1; et) that determine the reported endowment as a function of the
actual history h

t�1 and the true endowment et, and functions Æa(ht�1; et; �t; at) that deter-
mine the actual action as a function of the history h

t�1, endowment et, transfer �t, and
recommended action at. Since the actual action may be different from the recommen-
dation, this deviation also changes the probability distribution over histories and states.
The agent takes this change into account, and the changed probabilities are denoted as
p(htj�; Æ), with the inclusion of other conditioning elements where appropriate. In par-
ticular, we require that the actions of the agent be optimal from any history s

k on, and it
will also be useful to write down separate constraints for each possible endowment ek+1
in period k+1. Then for every possible deviation (Æe; Æa), any history s

k, and any ek+1, the
outcome function has to satisfy:

8Æ; s
k
; ek+1 :

1X
t=k+1

�
t

"X
Ht

p(htj�; Æ; sk; ek+1)u(et + �t � Æa(h
t�1

; et; �t; at))

#

�

1X
t=k+1

�
t

"X
St

p(stj�; sk; ek+1)u(et + �t � at)

#
: (9)

Here p(htj�; Æ; sk; ek+1) on the left-hand side is the probability of actual history h
t implied

by outcome function � and deviation Æ, conditional on the planner’s history s
k and re-

alized endowment ek+1, and the p(stj�; sk; ek+1) on the right-hand side is the probability
under truth-telling and obedience as above, but now conditioned on s

k and ek+1. Condi-
tion (9) imposes or describes honesty and obedience on the equilibrium path, similar to
(3).

It might seem at first sight that (9) is less restrictive than (3), because only a subset of pos-
sible deviations is considered. Specifically, deviations are nonrandom, and a constraint
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is imposed only at every s
t node, instead of every node hk of the agent’s history. How-

ever, none of these limitations are restrictive. Allowing for randomized deviations would
lead to constraints which are linear combinations of the constraints already imposed. Im-
posing (9) is therefore sufficient to ensure that the agent cannot gain from randomized
deviations. Also, notice that the conditioning history s

k enters (9) only by affecting prob-
abilities over future states st. These probabilities are identical for all hk that coincide in the
s
k part once ek+1 is realized, since the agent’s private information on past endowments

and actions affects the present only through the probabilities over different endowments.
Imposing a separate constraint for each h

k therefore would not put additional restrictions
on �.

Definition 4 An outcome function is an equilibrium outcome function under truth-telling and
obedience if it satisfies the constraints (7), (8) and (9) above. A feasible allocation in the truth-
telling mechanism is a probability distribution over endowments, transfers and actions that is
implied by an equilibrium outcome function.

Feasible allocations under truth-telling and obedience are a subset of the feasible alloca-
tions in the general setup, since (8) implies that (5) holds, (9) implies that (3) holds, and
(4) does not constrain allocations and could be satisfied by specifying off-path behavior
appropriately. In fact, we can show that the set of feasible allocations in the general and
the restricted setup are in fact identical.

Proposition 2 (Revelation Principle) For any message spaces M1, M2, and M3, any alloca-
tion that is feasible in the general mechanism is also feasible in the truth-telling-and-obedience
mechanism.

The proof takes the usual approach of mapping an equilibrium of the general setup into
an equilibrium outcome function in the restricted setup. Specifically, given an equilibrium
(�?; �?) in the general setup, the corresponding outcome function in the restricted setup
is gained by prescribing the outcomes on the equilibrium path, while integrating out all
the message spaces:

�(�t; atjet; s
t�1) �

X
Ht�1(st�1);M1;M2;M3

p(ht�1jst�1) �?(m1tjet; h
t�1) �?(�tjm1t; s

t�1(ht�1))

�
?(m2tjet; m1t; �t; h

t�1) �?(m3tjm1t; �t; m2t; s
t�1(ht�1)) �?(atjet; m1t; �t; m2t; m3t; h

t�1):
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The proof then proceeds by showing that the outcome function � on the left-hand side
satisfies all the required constraints. The essence of the matter is that lying or deviat-
ing under the new outcome function would be equivalent to using the optimizing strat-
egy function under the original outcome function, but evaluated at a counterfactual re-
alization. For example, an agent who has endowment e but reports ê will face the same
probability distribution over transfers and recommendations as an agent who under the
original outcome function behaved “as if” the endowment were ê. The agent can never
gain this way, since �? is an optimal strategy, and it is therefore preferable to receive the
transfers and recommendations intended for endowment e instead of ê.

We are therefore justified in continuing with the restricted setup which imposes truth-
telling and obedience. The objective function of the planner is now:

V (�) �

1X
t=0

Q
t

"X
St

p(s
t
j�)(��t)

#
; (10)

and the original planning problem can be expressed as maximizing (10) subject to (7), (8),
and (9) above.

3.2 Utility Vectors as State Variables

We now have a representation of the planning problem that requires truth-telling and
obedience, and yet does not constitute any loss of generality. However, we still allow
fully history-dependent outcome functions �. The next step is to reduce the planning
problem to a recursive version with a vector of promised utilities as the state variable.

We wish to work towards a problem in which the planner has to deliver a vector of
promised utilities at the beginning of period k, with elements depending on the endow-
ment ek. It will be useful to consider an auxiliary problem in which the planner has to
deliver a vector of reservation utilitiesw0, depending on the endowment in the initial pe-
riod. The original planning problem can then be cast, as we shall see below, as choosing
the vector of initial utility assignments w0 which yields the highest expected surplus for
the planner, given the initial exogenous probability distribution over states e 2 E at time
t = 0.

In the auxiliary planning problem, we impose the same probability constraints (7) and in-
centive constraints (9) as before. However, instead of a single promise-keeping constraint
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(8) there is now a separate promise-keeping constraint for each possible initial endow-
ment. For all e0, we require:

8e0 :X
T;A

�(�0; a0jw0; e0)

"
u(e0 + �0 � a0) +

1X
t=1

�
t

hX
St

p(stj�; s0)u(et + �t � at)

i#
= w0(e0):

(11)

Here the vectorw0 of endowment-specific utility promisesw0(e0) is taken as given. Notice
that we write the outcome function � as a function of the vector of initial utility promises
w0. In period 0, there is no prior history, but in a subsequent period t the outcome function
also depends on the history up to period t � 1, so that the outcome function would be
written as �(�t; atjw0; et; s

t�1).

In principle, specifying a separate utility promise for each endowment is more restrictive
than a requiring that a scalar utility promise be delivered in expected value across en-
dowments. However, the original planning problem can be recovered by introducing an
initial stage at which the initial utility vector is chosen by the planner. Since the vector of
promised utilitiesw0 will serve as our state variable, it will be important to show that the
set of all feasible utility vectors has nice properties.

Definition 5 The set W is given by all vectors w0 2 R
#E that satisfy constraints (7), (9), and

(11) for some outcome function �(�t; atjet; s
t�1).

Proposition 3 The setW is nonempty and compact.

Now we consider the problem of a planner who has promised utility vector w0 2W and
has received report e0 from the agent. In the auxiliary planning problem, the maximized
surplus of the planner is given by:

V (w0; e0) = max
�

X
T;A

�(�0; a0jw0; e0)

"
��0 +

1X
t=1

Q
t

hX
St

p(s
t
j�; s0)(��t)

i#
; (12)

where the maximization over current and future � is subject to constraints (7), (9), and
(11) above, for a given w0 2W and e0 2 E.
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We want to show that this problem has a recursive structure. To do this, we need to define
on-path future utilities that result from a given choice of �. For all sk�1, ek, let:

w(ek; s
k�1

; �) =

X
T;A

�(�k; akjw0; ek; s
k�1)

"
u(ek + �k � ak) +

1X
t=k+1

�
t�k

hX
St

p(stj�; sk)u(et + �t � at)

i#
;

(13)

and let w(sk�1; �) be the vector of these utilities over all ek. We can now show a version
of the principle of optimality for our environment:

Proposition 4 For allw0 2W and e0 2 E, and for any sk�1 and ek, there is an optimal contract
�
? such that the remaining contract from s

k�1 and ek is an optimal contract for the auxiliary
planning problem with e0 = ek and w0 = w(s

k�1
; �

?).

Thus the planner is able to reoptimize the contract at any future node. For Proposition 4
to go through, it is essential that we chose a vector of utility promises as the state variable,
as opposed to the usual scalar utility promise which is realized in expected value across
states. If the planner reoptimized given a scalar utility promise at a given date, the distri-
bution of expected utilities across states might be different than in the original contract.
Such a reallocation of utilities would change the incentives for lying and disobedience in
the preceding period, so that incentive-compatibility of the complete contract would no
longer be guaranteed. This problem is avoided by specifying a separate utility promise
for each possible endowment. Likewise, in implementing the utility promises it does not
matter whether the agent lied or was disobedient in the past, since the agent has to report
the realized endowment anyway, and once the endowment is realized past actions have
no further effects.3

Given Proposition 4, we know that the maximized surplus of the planner can be written
as:

V (w0; e0) =
X
A;T

�
?(�0; a0jw0; e0)

"
��0 +Q

X
E

p(e1js
0)V (w(s0; �?); e1)

#
: (14)

3The state space would have to be extended further if the action affected outcomes for more than one
period into the future.
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In light of (14), we can cast the auxiliary planning problem as choosing transfers and ac-
tions in the initial period, and choosing continuation utilities from the setW, conditional
on history s

0 = fe0; �0; a0g.

We are now close to the recursive formulation of the planning problem that we are look-
ing for. We will drop the time subscripts from here on, and write the choices of the planner
as a function of the current state, namely the vector of promised utilities w that has to be
delivered in the current period, and the reported endowment e. The choices are functions
�(�; ajw; e) and w0(w; e; �; a), where w0 is the vector of utilities promised from tomor-
row on, which is restricted to lie in W. Assuming that the value function V is known
(it needs to be computed in practice), the auxiliary planning problem can be solved by
solving a static optimization problem for all vectors in W. An optimal contract for the
non-recursive auxiliary planning problem can be found by assembling the appropriate
solutions of the static problem.

We still need to determine which constraints need to be placed on the static choices
�(�; ajw; e) andw0(w; e; �; a) in order to guarantee that the implied contract satisfies prob-
ability measure constraints (7), maximization (9), and promise keeping (11) above. In
order to reproduce (7), we need to impose:

X
T;A

�(�; ajw; e) = 1: (15)

The promise-keeping constraint (11) will be satisfied if we impose:

X
T;A

�(�; ajw; e)

"
u(e+ � � a) + �

X
E

p(e0ja)w0(w; e; �; a)(e0)

#
= w(e) (16)

where along the equilibrium path, honesty and obedience prevails in reports e and actions
a. The incentive constraints are more subtle. We first require that the agent cannot gain by
following another action strategy Æa(�; a), assuming that the reported endowment e was
correct. Note that e enters the utility function as the actual value and as the conditioning
element in � as the reported value.

X
T;A

�(�; ajw; e)

"
u(e+ � � Æa(�; a)) + �

X
E

p(e0jÆa(�; a))w
0(w; e; �; a)(e0)

#
� w(e): (17)

A similar constraint on disobedience is also required if the initial report was e, but the
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true state was ê, i.e., false reporting. Note that ê enters the utility function as the actual
value but e is the conditioning element in � on the left-hand side, and w(ê) is the on-path
realized utility under honesty and obedience at ê.

X
T;A

�(�; ajw; e)

"
u(ê+ � � Æa(�; a)) + �

X
E

p(e0jÆa(�; a))w
0(w; e; �; a)(e0)

#
� w(ê): (18)

Conditions (17) and (18) impose a sequence of period-by-period incentive constraints on
the implied full contract. The constraints rule out that the agent can gain from disobe-
dience or misreporting in any period, given that he goes back to truth-telling and obedi-
ence from the next period on. Equations (17) and (18) therefore imply that (9) holds for
one-shot deviations. We still have to show that (17) and (18) are sufficient to prevent de-
viations in multiple periods, but the argument follows as in Phelan and Townsend (1991).
That is, for a finite number of deviations, we can show that the original constraints are
satisfied by backward induction. The agent clearly does not gain in the last period when
he deviates, since this is just a one-time deviation and by (17) and (18) is not optimal. Go-
ing back one period, the agent has merely worsened his future expected utility by lying
or being disobedient in the last period. Since one-shot deviations do not improve utility,
the agent cannot make up for this. Going on this way, we can show by induction that any
finite number of deviations does not improve utility. Lastly, consider an infinite number
of deviations. Let us assume that there is a deviation that gives a gain of �. Since � < 1,
there is a period T such that at most �=2 utils can be gained from period T on. This implies
that at least �=2 utils have to be gained until period T . But this contradicts our result that
there cannot be any gain from deviations with a finite horizon.

Thus we are justified to pose the auxiliary planning problem as solving:

V (w; e) = max
��0;w0

X
A;T

�(�; ajw; e)

"
�� +Q

X
E

p(e0ja)V (w0(w; e; �; a); e0)

#
(19)

by choice of � and w0, subject to constraints (15) to (18) above. Program 1 below is a
version of this problem with a discrete grid for promised utilities as an approximation. We
have assumed that the function V (w; e) is known. In practice, V (w; e) can be computed
with standard dynamic programming techniques. Specifically, the right-hand side of (19)
defines an operator T that maps functions V (w; e) into TV (w; e). It is easy to show, as in
Phelan and Townsend (1991), that T maps bounded continuous functions into bounded
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continuous functions, and that T is a contraction. It then follows that T has a unique fixed
point, and the fixed point can be computed by iterating on the operator T .

The preceding discussion was based on the assumption that the set W of feasible util-
ity vectors is known in advance. In practice, W is not known and needs to be com-
puted alongside the value function V (w; e). W can be computed with the dynamic-
programming methods described in detail in Abreu, Pearce, and Stacchetti (1990). An
outline of the method is given in Section 7.

Finally, the entire discussion is easily specialized to the case of a finite horizon T . VT

would be the value function for period T , VT�1 for period T � 1,WT�1 the set of feasible
promised utilities at time T � 1, and so on.

3.3 The Discretized Version

For numerical implementation of the recursive formulation of the planning problem, we
require finite grids for all choice variables in order to employ linear programming tech-
niques. #E is the number of grid points for the endowment, #T is the number of pos-
sible transfers, and #A is the number of actions. The vector of promised utilities is also
assumed to be in a finite set W, and the number of possible choices is #W. To stay in
the linear programming framework, we let the planner choose a probability distribution
over vectors of utility promises, instead of choosing a specific utility vector.4 That is, � ,
a, and w0 are chosen jointly under �. Notice that while the finite grids for endowment,
transfer, and action are features of the physical setup of the model, the finite grid for util-
ity promises is merely a numerical approximation of the continuous set in our theoretical
formulation.

With finite grids, the optimization problem of a planner who has promised vector w and
has received report e is:

Program 1:

V (w; e) = max
��0

X
T;A;W0

�(�; a;w
0
jw; e)

h
�� +Q

X
E

p(e
0
ja)V (w

0
; e
0
)

i
(20)

4This imposes no loss of generality, since choosing probabilities over utility promises is equivalent to
choosing the corresponding expected utility vector directly.
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subject to the constraints (21) to (24) below. The first constraint is that the �(�) sum to one
to form a probability measure, as in (15):

X
T;A;W0

�(�; a;w0
jw; e) = 1: (21)

Second, the contract has to deliver the utility that was promised for state e, as in (16):

X
T;A;W0

�(�; a;w
0
jw; e)

h
u(e+ � � a) + �

X
E

p(e
0
ja)w

0
(e
0
)

i
= w(e): (22)

Third, the agent needs incentives to be obedient. Corresponding to (17), for each transfer
� and recommended action a, the agent has to prefer to take action a over any other action
â 6= a:

8�; a; â 6= a :
X
W

0

�(�; a;w
0
jw; e)

h
u(e+ � � â) + �

X
E

p(e
0
jâ)w

0
(e
0
)

i

�

X
W

0

�(�; a;w0
jw; e)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i
: (23)

Finally, the agent needs incentives to tell the truth, so that no agent with endowment ê 6= e

would find this branch attractive. Under the promised utility vectorw, agents at ê should
get w(ê). Thus, an agent who actually has endowment ê but says e nevertheless must not
get more utility than was promised for state ê. This has to be the case regardless whether
the agent follows the recommendations for the action or not. Thus, for all states ê 6= e and
all functions Æ : T �A! A mapping transfer � and recommended action a into an action
Æ(�; a) actually taken, we require as in (18):

8ê 6= e; Æ :X
T;A;W0

�(�; a;w
0
jw; e)

h
u(ê+ � � Æ(�; a)) + �

X
E

p(e
0
jÆ(�; a))w

0
(e
0
)

i
� w(ê): (24)

Note that similar constraints are written for the ê problem, so that agents with ê receive
w(ê) from a constraint like (22). For a given vector of utility promises, there are #E

Program 1’s to solve.

Program 1 allows us to numerically solve the auxiliary planning problem for a given vec-
tor of utility promises, by using linear programming and iteration on the value function.
To recover the original planning problem with a scalar utility promiseW0, we let the plan-
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ner offer a lottery �(wjW0) over utility vectors w before the first period starts and before
e is known. The problem of the planner at this initial stage is:

V (W0) = max
��0

X
W

�(wjW0)

hX
E

p(e)V (e;w)

i
(25)

subject to a probability and a promise-keeping constraint:

X
W

�(wjW0) = 1: (26)

X
W

�(wjW0)

hX
E

p(e) w(e)

i
� W0: (27)

The same methods can be used for computing models with finitely many periods. With
finitely many periods, the value functions carry time subscripts. The last period T would
be computed first, by solving Program 1 with all terms involving utility promises omitted.
The computed value function VT (w; e) for period T is then an input in the computation
of the value function for period T � 1. Moving backward in time, the value function for
the initial period is computed last.

An important practical limitation of the approach outlined this far is that the number
of truth-telling constraints in Program 1 is very large, which makes computation prac-
tically infeasible even for problem with relatively small grids. For each state ê there is
a constraint for each function Æ : T � A ! A, and there are (#A)(#T�#A) such func-
tions. Unless the grids for � and a are rather sparse, memory problems make the com-
putation of this program infeasible. The total number of variables in this formulation,
the number of objects under �(�), is #T � #A � #W. There is one probability con-
straint (21) and one promise-keeping constraint (22). The number of obedience con-
straints (23) is #T � #A � (#A � 1), and the number of truth-telling constraints (24)
is (#E�1)� (#A)(#T�#A). Thus, the number of constraints grows exponentially with the
product of the grid sizes for actions and transfers.

4 A Version with Double Reporting

The basic idea of this section is to let the agent report the endowment a second time af-
ter the transfer is received, but before a recommendation for the action is received. On
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the equilibrium path, the agent will make the correct report twice and follow the recom-
mended action, and the optimal allocation will be the same as in the first formulation. At
first sight, it might therefore appear that the second report is not necessary, since it will
always coincide with the first report. The advantage of double reporting is that it allows
the planner to specify behavior off the equilibrium path, because outcomes are deter-
mined even if the two reports differ. We will see that this possibility leads to a significant
reduction in the number of incentive constraints.

4.1 The Revelation Principle Once Again

We now will follow the same steps as above to derive another recursive formulation of the
original planning problem. The first step is to apply the revelation principle to a restricted
setup in which the agent reports the endowment twice. We therefore consider the original
problem under the restriction that the two message spaces of the agent are given by the
space of endowments, M1 = M2 = E, and that the message space of the planner is the
space of possible actions, M3 = A. The contemporary part st of the history of the planner
is now given by:

st � fe1t; e2t; �t; atg;

where e1t and e2t are the two reports on the endowment, �t is the transfer, and at is the rec-
ommended action. The planner chooses an outcome function �(�t; atje1t; e2t; s

t�1) which
determines the transfer and the action as a function of the two reported endowments by
the agent and the history up to period t � 1. Notice that since this function is also speci-
fied for the case that the two reports differ, the planner in effect specifies behavior off the
equilibrium path.

The planner chooses an outcome function subject to a number of constraints which ensure
that the outcome function and truth-telling and obedience on the part of the agent are an
equilibrium. To ensure that the outcome function forms a probability measure, we require
that �(�t; atjet; st�1) � 0 for all transfers, actions, endowments and histories, and that:

8e1t; e2t; s
t�1 :

X
T;A

�(�t; atje1t; e2t; s
t�1) = 1: (28)

Next, the transfer � cannot depend on the second report e2t, since the second report is
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made only after the agent receives the transfer. This implies the following condition:5

8�t; e1t; e2t; �e2t; s
t�1

:
X
A

�(�t; atje1t; e2t; s
t�1

) =
X
A

�(�t; atje1t; �e2t; s
t�1

): (29)

Given an outcome function, probabilities p(stj�) of histories are defined in the obvious
way. Given these probabilities, as in (8) the outcome function has to deliver reservation
utility W0 to the agent, provided that the agent reports truthfully twice and takes the
recommended actions:

1X
t=0

�
t

"X
St

p(s
t
j�)u(et + �t � at)

#
� W0: (30)

Also, it has to be optimal for the agent to tell the truth each time and follow the recom-
mended action. We will write a possible deviation strategy Æ as a function Æe1(h

t�1
; et)

that determines the first reported endowment as a function of the history and the true en-
dowment, a function Æe2(h

t�1
; et; �t) that determines the second reported endowment as

a function of the history h
t�1, the true endowment et, and the transfer �t, and a function

Æa(h
t�1

; et; �t; at) that determines the action as a function of history h
t�1, endowment et,

transfer �t, and recommended action at. Since the action may be different, this deviation
also changes the probability distribution over histories and states. The agent takes this
change into account, and the changed probabilities are denoted as p(htj�; Æ).

We require that truth-telling and obedience be optimal for the agent, starting in any pe-
riod and from any history. In addition, we also require that the prescribed actions be
optimal for the agent at the node in the middle of a period, i.e., after the transfer has been
assigned, regardless of what the first report was. Thus even if the agent misreports the
endowment at the beginning of the period, it has to be optimal to report truthfully at the
second report. As we will see later on, this requirement leads to major simplifications in
the computation of the optimal outcome function.

The first requirement, akin to (9) is that the prescribed reports and actions be optimal,
given any history h

k that has been already realized, inducing honesty and obedience in

5Alternatively, we could have formulated the outcome functions in terms of marginal probabilities for
�t and at, in which case (29) would be implied.
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the future:

8Æ; s
k
; ek+1 :

1X
t=k+1

�
t

"X
Ht

p(htj�; Æ; sk; ek+1)u(et + �t � Æa(h
t�1

; et; �t; at))

#

�

1X
t=k+1

�
t

"X
St

p(stj�; sk; ek+1)u(et + �t � at)

#
: (31)

In fact, we place an even more strict restriction on the outcome function by reproducing
(4). Given history h

k, we require that even if the first report in period k + 1 was wrong, it
is optimal for the agent to tell the truth at the second report in k+1 and follow the recom-
mended action, and to be honest and obedient in the future. This leads to the following
condition:

8Æ; s
k
; ek+1 :

1X
t=k+1

�
t

"X
Ht

p(h
t
j�; Æ; s

k
; ek+1)u(et + �t � Æa(h

t�1
; et; �t; at))

#

� �
k+1

"X
T;A

�
�
�k+1; ak+1jÆe1(h

k
; ek+1); ek+1; s

k
�
u(ek+1 + �k+1 � ak+1)

#

+

1X
t=k+2

�
t

"X
St

p(stj�; sk; ek+1)u(et + �t � at)

#
: (32)

We can now define feasible allocations under double reporting, analogous to Definition
4:

Definition 6 An outcome function is an equilibrium outcome function under truth telling and
obedience with double reporting if it satisfies the constraints (28) to (32) above. A feasible allo-
cation is a probability distribution over endowments, transfers and actions that is implied by an
equilibrium outcome function.

Feasible allocations under truth-telling and obedience with double reporting are a subset
of the feasible allocations in the general setup. The next proposition states that the set of
constraints (28) to (32) does not put more restrictions on feasible allocation as the original
constraints (3), (4), and (5), so that the sets of feasible allocations are in fact identical.

Lemma 1 For any message spaces M1, M2, and M3, any allocation that is feasible in the general
mechanism is also feasible in the truth-telling mechanism with double reporting.
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We are therefore justified in framing the maximization problem of the planner as maxi-
mizing:

V (�) �

1X
t=0

Q
t

"X
St

p(stj�)(��t)

#
; (33)

subject to (28) to (32) above.

4.2 Utility Vectors as State Variables

As before with Program 1, the next step is to reduce the current game to a recursive
version with a vector of promised utilities as the state variable. The result will be Program
2.

Again, we consider an auxiliary planning problem in which the planner has to deliver a
vector of reservation utilities w0, depending on the endowment in the first period. The
choice object of the planner is given by �(�t; atje1t; e2t; s

t�1). For brevity of notation, we
suppress the dependence of the outcome function on the initial utility vector w0. The
planner picks the contract conditional on the initial report e10 (the first report in period
0) by the agent. The probability and consistency constraints (28) and (29) are imposed
as before. Instead of one promise-keeping constraint (30) which is realized in expected
value across states, there now is a promise-keeping constraint for each possible initial
endowment. For all e0, we require:

8e0 :
X
T;A

�(�0; a0je0; e0)

h
u(e0 + �0 � a0)

+

1X
t=1

�
t

X
St�1;E;T;A

p(s
t�1
js0)p(etjs

t�1
)�(�t; atjet; et; s

t�1
)u(et + �t � at)

i
= w0(e0): (34)

The incentive constraints (31) and (32) are imposed as well. Since the vector of promised
utilities w will serve as our state variable, it will be important to show that the set of all
feasible utility vectors has nice properties.

Definition 7 The setW is given by all vectorsw 2 R
#E that satisfy constraints (28), (29), (31),

(32), and (34) for some outcome function �(�t; atjet; et; s
t�1).

Lemma 2 The setW is nonempty and compact.
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(The proof is the same as for Proposition 3)

Now we consider the problem of a planner who has promised utility vector w 2W, and
who has received the initial report e0 (the first report in the initial period). In this auxiliary
planning problem, the maximized surplus of the planner is given by:

V (w0; e0) = max
�

X
T;A

�(�0; a0je0; e0)

"
��0 +

1X
t=1

Q
t

hX
St

p(stj�; s0)(��t)

i#
; (35)

where the maximization is subject to constraints (28), (29), (31), (32), and (34) above, for a
given e0 2 E andw 2W. We want to show that this problem has a recursive structure.

To do this, we need to define on-path future utilities. For all sk�1, ek, let:

w(ek; s
k�1) =

X
T;A

�(�k; akjek; ek; s
k�1)

"
u(ek + �k � ak) +

1X
t=k+1

�
t�k

hX
St

p(stj�; sk)u(et + �t � at)

i#
; (36)

and let w(sk�1; �) be the vector of these utilities over all ek. We can now show the follow-
ing result:

Lemma 3 For all w0 2W and e0 2 E, and for any sk�1 and ek, there is an optimal contract �?

such that the remaining contract from s
k�1 and ek is an optimal contract for the auxiliary planning

problem with e0 = ek and w0 = w(s
k�1

; �
?).

Given this result, we know that the maximized surplus of the planner can be written as:

V (w0; e0) =
X
A;T

�
?
(�0; a0je0; e0)

"
��0 +Q

X
E

p(e1js
0)V (w(s0; �?); e1)

#
: (37)

In light of (37), we can cast the planner’s problem as choosing transfers and actions in the
present period, and choosing continuation utilities from the set W from tomorrow on.
We will write the choices of the planner as a function of the vector of promised utilities
w that has to be delivered in the current period, and the current state e. The choices of
the planner are therefore functions �(�; ajw; e1; e2) and w0(w; e1; e2; �; a), where w0 is the
vector of utilities promised from tomorrow on, and is restricted to lie inW. We still need
to determine which constraints need to be placed on these choices in order to guarantee
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that the implied contract satisfies (28), (29), (31), (32), and (34). In order to reproduce (28),
we need to impose:

8e2 :
X
T;A

�(�; ajw; e; e2) = 1: (38)

The consistency constraint (29) is satisfied if we impose:

8�; e2; �e2 :
X
A

�(�; ajw; e; e2) =
X
A

�(�; ajw; e; �e2): (39)

The promise-keeping constraint (34) will be satisfied if we impose:

X
T;A

�(�; ajw; e; e)

"
u(e+ � � a) + �

X
E

p(e
0
ja)w

0
(w; e1; e2; �; a)(e

0
)

#
= w(e): (40)

We now get to the incentive constraints. As above in the derivation of Program 1, we
only write down incentive constraints for one-shot deviations, which can be shown to be
equivalent to the full incentive constraints (31) and (32). It will also be useful to write
down separate constraints for deviations in actions and reports. First of all, we require
that it is optimal to take the required action, assuming that the truth was reported at the
second time. This constraint implements (32) for one-shot deviations in terms of taking
the right action:

8ê; �; a; â : u(ê+ � � â) + �

X
E

p(e0jâ)w0(w; e; ê; �; a)(e0)

� u(ê+ � � a) + �

X
E

p(e0ja)w0(w; e; ê; �; a)(e0): (41)

In order to reproduce (32) in terms of reporting, and therefore ensure that the second
report be correct and the recommended action is taken even if the first report were wrong,
we need to impose:

8ê; �; ^̂e 6= ê; Æ :

X
A;W0

�(�; a; jw; e; ^̂e)

"
u(ê+ � � Æ(a)) + �

X
E

p(e0jÆ(a))w0(w; e; ^̂e; �; a)(e0)

#

�

X
A;W0

�(�; ajw; e; ê)

"
u(ê+ � � a) + �

X
E

p(e0ja)w0(w; e; ê; �; a)(e0)

#
: (42)
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Finally, we still need to ensure that the truth be reported the first time, thereby imple-
menting (31):

8ê 6= e :
X
T;A

�(�; a; jw; e; ê)

"
u(ê+ � � a) + �

X
E

p(e0ja)w0(w; e; ê; �; a)(e0)

#
� w(ê): (43)

In this last constraint, we assume that the agent will tell the truth and follow the recom-
mendations afterwards, instead of checking over all possible reporting and action strate-
gies. We are justified in doing so because constraint (42), which is imposed simultane-
ously, guarantees that truthful reporting at the second report and obedience will be the
optimal strategy even if the first report were wrong. Thus allowing for other strategies
merely lowers the utility of the agent on the left-hand side, and does not introduce addi-
tional constraints. It is here were the gains from double reporting arise.

The constraints above rule out that the agent can gain from misreporting or disobedience
in any period, given that he goes back to truth-telling and obedience from the next period
on. The constraints therefore imply that (31) and (32) hold for one-shot deviations. The
argument used in the derivation of Program 1, however, applies here as well, so that (41)
to (43) imply (31) and (32) even for a finite or infinite number of deviations.

Thus we are justified to pose the problem of the planner as solving:

V (w; e) = max
��0

X
A;T

�(�; ajw; e; e)

"
�� + �

X
E

p(e0ja)V (w0(w; e; e; �; a); e0)

#
(44)

by choice of � and w0, subject to constraints (38) to (43) above. Program 2 is a version of
this problem with a discrete grid for promised utilities. Of course, we now assume that
the function V (w; e) is already known. V (w; e) can be computed with standard dynamic
programming techniques. Specifically, the right-hand side of (44) defines an operator
T that maps functions V (w; e) into TV (w; e). It is easy to show that T maps bounded
continuous functions into bounded continuous functions, and that T is a contraction. It
then follows that T has a unique fixed point, and the fixed point can be computed by
iterating on the operator T .
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4.3 The Discretized, Recursive Version

The planning problem with double reporting can now further be reduced to a recursive
version with a vector of utility promises as a state variable by following the same steps
as above in the derivation of Program 1. Since the steps and proofs are virtually identical
(they are contained in the working paper version of the article), we now go directly to the
discretized recursive version of the planning problem with double reporting.

As before, the agent comes into the period with a vector of promised utilities w. At the
beginning of the period, the agent observes the state e and makes a report to the planner.
Then the planner delivers the transfer � , and afterwards the agent reports the endowment
e again. The incentive-compatibility constraints will ensure that this second report be
correct, even if the first report was false. Because now the planner receives a report after
the transfer, the number of possible transfers does not affect the number of truth-telling
constraints, as it did in (24).

Program 2:
The optimization problem of a planner who promised utility vector w and has already
received first report e is:

V (w; e) = max
��0

X
T;A;W0

�(�; a;w
0
jw; e; e)

h
�� +Q

X
E

p(e
0
ja)V (w

0
; e
0
)

i
(45)

subject to constraints (46)-(51) below. Notice that the contract �(�; a;w0
jw; e; e) is condi-

tioned on two reports e, unlike in (20). The first constraint, much like (21), is that the �(�)
form a probability measure for any second report ê:

8ê :
X

T;A;W0

�(�; a;w0
jw; e; ê) = 1: (46)

Since the second report is made after the transfer, we have to enforce that the transfer does
not depend on the second report. For all ê 6= e and all � , we require:

8ê 6= e; � :
X
A;W0

�(�; a;w0
jw; e; e) =

X
A;W0

�(�; a;w0
jw; e; ê): (47)

Given that the agent told the truth twice, the contract has to deliver the promised utility
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w(e) for state e from vector w. That is, much like (22) above:

X
T;A;W0

�(�; a;w
0
jw; e; e)

h
u(e+ � � a) + �

X
E

p(e
0
ja)w

0
(e
0
)

i
= w(e): (48)

Next, the agent needs to be obedient. Given that the second report is true, it has to be
optimal for the agent to follow the recommended action. For each true state ê, transfer � ,
recommended action a, and alternative action â 6= a we require much like (23):

8ê; �; a; â 6= a :
X
W

0

�(�; a;w
0
jw; e; ê)

h
u(ê+ � � â) + �

X
E

p(e
0
jâ)w

0
(e
0
)

i

�

X
W

0

�(�; a;w
0
jw; e; ê)

h
u(ê+ � � a) + �

X
E

p(e
0
ja)w

0
(e
0
)

i
: (49)

We also have to ensure that the agent prefers to tell the truth at the second report, no
matter what he reported the first time around. Since the transfer is already known at the time
the second report is made, the number of deviations from the recommended actions that we have
to consider does not depend on the number of possible transfers. For each actual ê, transfer � ,
second report ^̂e 6= ê, and action strategy Æ : A! A, we require:

8ê; �; ^̂e 6= ê; Æ :
X
A;W0

�(�; a;w
0
jw; e; ^̂e)

h
u(ê+ � � Æ(a)) + �

X
E

p(e
0
jÆ(a))w

0
(e
0
)

i

�

X
A;W0

�(�; a;w0
jw; e; ê)

h
u(ê+ � � a) + �

X
E

p(e0ja)w0(e0)

i
: (50)

Finally, we also have to ensure that the first report e be correct. That is, an agent who is
truly at state ê and should get w(ê), but made a counterfactual first report e, cannot get
more utility than was promised for state ê. For all ê 6= e we require:

8ê 6= e :
X

T;A;W0

�(�; a;w0
jw; e; ê)

h
u(ê+ � � a) + �

X
E

p(e0ja)w0(e0)

i
� w(ê): (51)

Notice that these latter truth-telling constraints do not involve deviations in the action a.
At the time of the first report the agent knows that the second report will be correct and
that he will take the recommended action, because constraints (49) and (50) hold.

Proposition 5 Program 1 and Program 2 are equivalent.

The number of variables in this formulation is #E � #T � #A � #W. Thus, the num-
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ber of variables increased relative to the first version, since � now also depends on the
second report ê. Similarly, there are #E probability constraints (46), (#E � 1) � #T in-
dependence constraints (47), and there is one promise-keeping constraint (48). The total
number of obedience constraints (49) is #E � #T � #A � (#A � 1). The number of
truth-telling constraints for the second report (50) is #E � #T � (#E � 1) � (#A)(#A),
and the number of truth-telling constraints for the first report (51) is #E � 1. The key
advantage of Program 2 relative to Program 1 is that the number of constraints does not
increase exponentially with the number of possible transfers � . As long as the number
of possible actions a is small, this formulation allows computation with fine grids for the
other variables. However, the number of constraints still increases exponentially with the
number of actions. In the next section we will address methods to deal with this problem.

5 A Version With Off-Path Utility Bounds

We saw already in the last section that specifying behavior off the equilibrium path can
lead to a reduction in the number of incentive-compatibility constraints. We will now ex-
ploit this idea in a way similar to Prescott (1997) in order to reduce the number of truth-
telling constraints. The choice variables in the new formulation include utility bounds
v(�) that specify the maximum utility an agent can get when lying about the endowment
and receiving a certain recommendation. Specifically, for a given reported endowment
e, v(ê; e; �; a) is an upper bound for the utility of an agent who actually has endowment
ê 6= e, reported endowment e nevertheless, and received transfer � and recommenda-
tion a. This utility bound is already weighted by the probability of receiving transfer �
and recommendation a. Thus, in order to compute the total expected utility that can be
achieved by reporting e when the true state is ê, we simply have to sum the v(ê; e; �; a)

over all possible transfers � and recommendations a. The truth-telling constraint is then
that this utility of saying e when being at state ê is no larger than the utility promise w(ê)
for ê.

Program 3:
The optimization problem of the planner in this formulation given report e and promised
utility vector w is:

V (w; e) = max
��0;v

X
T;A;W0

�(�; a;w0
jw; e)

h
�� +Q

X
E

p(e0ja)V (w0
; e
0)

i
(52)
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subject to the constraints (53)-(57) below. Apart from the addition of the utility bounds
v(�) the objective function (52) is identical to (20). The first constraint is the probability
measure constraint, identical with (21):

X
T;A;W0

�(�; a;w0
jw; e) = 1: (53)

The second constraint is the promise-keeping constraint, identical with (22):

X
T;A;W0

�(�; a;w
0
jw; e)

h
u(e+ � � a) + �

X
E

p(e
0
ja)w

0
(e
0
)

i
= w(e): (54)

We have to ensure that the agent is obedient and follows the recommendations of the
planner, given that the report is true. For each transfer � , recommended action a, and
alternative action â 6= a, we require as in (23):

8�; a; â 6= a :
X
W

0

�(�; a;w0
jw; e)

h
u(e+ � � â) + �

X
E

p(e0jâ)w0(e0)

i

�

X
W

0

�(�; a;w0
jw; e)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i
: (55)

Next, the utility bounds have to be observed. An agent who reported state e, is in fact
at state ê, received transfer � , and got the recommendation a, cannot receive more utility
that v(ê; e; �; a), where again v(ê; e; �; a) incorporates the probabilities of transfer � and
recommendation a. For each state ê 6= e, transfer � , recommendation a, and all possible
actions â we require:

8ê 6= e; �; a; â :
X
W

0

�(�; a;w0
jw; e)

h
u(ê+ � � â) + �

X
E

p(e0jâ)w0(e0)

i
� v(ê; e; �; a):

(56)
Finally, the truth-telling constraints are that the utility of an agent who is at state ê but
reports e cannot be larger than the utility promise for ê. For each ê 6= e we require:

8ê 6= e :
X
T;A

v(ê; e; �; a) � w(ê): (57)

The number of variables in this problem is #T�#A�#W under �(�) plus (#E�1)�#T�
#A, where the latter terms reflect the utility bounds v(�) that are now choice variables.
There is one probability constraint (53) and one promise-keeping constraint (54). The
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number of obedience constraints (55) is #T � #A � (#A � 1). There are (#E � 1) �

#T � (#A)2 constraints (56) to implement the utility bounds, and (#E � 1) truth-telling
constraints (57). Notice that the number of constraints does not increase exponentially in
any of the grid sizes. The number of constraints is approximately quadratic in #A and
approximately linear in all other grid sizes. This makes it possible to compute models
with a large number of actions.

We now want to show that Program 3 is equivalent to Program 1. In both programs, the
planner chooses lotteries over transfer, action, and promised utilities. Even though in
Program 3 the planner also chooses utility bounds, in both programs the planner’s utility
depends only on the lotteries, and not on the bounds. The objective functions are identi-
cal. In order to demonstrate that the two programs are equivalent, it is therefore sufficient
to show that the set of feasible lotteries is identical. We therefore have to compare the set
of constraints in the two programs.

Proposition 6 Program 1 and Program 3 are equivalent.

6 Subdividing the Problem

In the last formulation, the number of constraints gets large if both the grids for trans-
fer � and action a are made very fine. In practice, this leads to memory problems when
computing. In this section we develop a formulation in which the transfer and the recom-
mendation are assigned at two different stages. At each stage, the number of variables and
constraints is relatively small. This enables us to compute problems with fine grids for
actions and transfers.

As in Section 4 on double reporting, the period is divided into two parts. In the first sub-
period the agent reports the endowment, and the planner assigns the transfer, an interim
utility when the agent is telling the truth, as well as a vector of utility bounds in case the
agent was lying. In the second subperiod the planner assigns an action and a vector of
promised utilities for the next period.

The solution to the problem in the second subperiod is computed for each combination
of endowment e, transfer � , interim utility wm(e) (m for “middle” or interim) along the
truth-telling path, and vector of utility bounds for lying, �wm(ê; e). Here �wm(ê; e) is an
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upper bound on the utility an agent can get who has endowment ê, but reported e nevertheless.
In order to make the exposition more transparent, we write wm(e) and the vector �wm(ê; e)

as a function of e to indicate the state for which the interim utility is assigned. �wm(ê; e)

is the vector of �wm(ê; e) with components running over endowments ê 6= e. The choice
variables in the second subperiod are lotteries over the action a and the vector of promised
utilities w0 for the next period.

We use Vm[e; �; wm(e); �wm(ê; e)] to denote the utility of the planner if the true state is e, the
transfer is � , and wm(e) and �wm(ê; e) are the assigned interim utility and utility bounds
for lying. The function Vm(�) is determined in the second subperiod (Program 4b below),
but as is typical of dynamic programs, we now take that function Vm(�) as given.

We will analyze the first subperiod. In the first subperiod the planner assigns transfers,
interim utilities, and utility bounds. When choosing the utility assignments, the planner
is restricted to assignments that can actually be implemented in the second subperiod.
We use W(e; �) to denote the set of feasible utility assignments for a given state e and
transfer � . For now we will take this set as given, and define it precisely below when we
turn to the second subperiod.

The agent comes into the first subperiod with a vector of promised utilities w, to be ef-
fected depending on the realized state e. The planner assigns a transfer � , on-path interim
utilities wm(e), and off-path utility bounds �wm(ê; e) subject to promise-keeping and truth-
telling constraints.

Program 4a:
The maximization problem of the planner given reported endowment e and promised
utility vector w is:

V (w; e) = max
��0

X
T

X
W(e;�)

�(�; wm(e); �wm(ê; e)jw; e) Vm[e; �; wm(e); �wm(ê; e)] (58)

subject to the constraints (59)-(61) below. The first constraint is the probability constraint:

X
T

X
W(e;�)

�(�; wm(e); �wm(ê; e)jw; e) = 1: (59)

Promises have to be kept:

X
T

X
W(e;�)

�(�; wm(e); �wm(ê; e)jw; e) wm(e) = w(e): (60)
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Finally, truth telling has to be observed, so that this e branch is not made too tempting.
An agent who is at state ê should not be able to gain by claiming to be at state e. For all
ê 6= e, we require:

8ê 6= e :
X
T

X
W(e;�)

�(�; wm(e); �wm(ê; e)jw; e) �wm(ê; e) � w(ê): (61)

The number of variables in this program is
P

T
#W(e; �), and there are 1 + (#E) con-

straints: one probability constraint (59), one promise-keeping constraint (60), and (#E-1)
truth-telling constraints (61).

We now turn to the second subperiod. As before in Section 3.3, apart from the lotter-
ies over actions and utilities, the program in the second subperiod also assigns utility
bounds. v(ê; e; �; a) is an upper bound on the utility an agent can get who has true en-
dowment ê, reported endowment e, and receives transfer � and recommendation a. These
utility bounds are weighted by the probability of receiving recommendation a.

Program 4b:
The following program, given endowment e, transfer � , and interim utilities and utility
bounds, determines Vm[�]:

Vm[e; �; wm(e); �wm(ê; e)] = max
��0;v

X
A;W0

�(a;w0) [�� +Q

X
E

p(e0ja)V (w0
; e
0)] (62)

subject to constraints (63)-(67) below. The first constraint is the usual probability con-
straint: X

A;W0

�(a;w0) = 1: (63)

The promise-keeping constraint requires that the interim utility wm(e) that was promised
is actually delivered:

X
A;W0

�(a;w
0
)

h
u(e+ � � a) + �

X
E

p(e
0
ja)w

0
(e
0
)

i
= wm(e): (64)

The obedience constraints ensure that given that the reported endowment is correct, the
agent carries out the recommended action. For all recommended a and alternative actions
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â 6= a, we require:

8a; â 6= a :
X
W

0

�(a;w
0
)

h
u(e+ � � â) + �

X
E

p(e
0
jâ)w

0
(e
0
)

i

�

X
W

0

�(a;w0)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i
: (65)

The next set of constraints implements, or respects, the utility bounds. The utility of
having reported e, being at state ê, having received transfer � and recommendation a

cannot be larger than v(ê; e; �; a). For all ê 6= e, all recommendations a, and all actions â
we require:

8ê 6= e; a; â :
X
W

0

�(a;w0)

h
u(ê+ � � â) + �

X
E

p(e0jâ)w0(e0)

i
� v(ê; e; �; a); (66)

where as usual e and � are givens for Program 4b. Finally, the utility bounds for misre-
porting the endowment have to be observed. For each endowment ê 6= e we require:

8ê 6= e :
X
A

v(ê; e; �; a) � �wm(ê; e): (67)

The number of variables in this program is #A�#W under �(�) plus (#E�1)�#A under
v(�), where again e and � are fixed at this stage of the problem. There is one probability
constraint (63) and one promise-keeping constraint (64), and there are #A�(#A�1) obe-
dience constraints (65). The number of constraints (66) to implement the utility bounds
is (#E � 1)� (#A)2, and the number of truth-telling constraints (67) is (#E � 1). Notice
that the number of constraints and variables does not depend on the grid for the transfer.
More possible transfers will increase the number of programs to be computed at this second
stage (Program 4b), but the programs will not change in size.

We still have to define the set W(e; �) of feasible interim utility assignments in Program
4a. It is the set of all assignments for which Program 4b has a solution. With Wm being
the utility grid that is used for wm(e) and �wm(ê; e), define:

W(e; �) =
�
(wm(e); �wm(ê; e)) 2 (Wm)

(#E)
j Vm[e; �; wm(e); �wm(ê; e)] is defined

	
(68)

In other words, we vary utility assignments as parameters or states in Program 4b and
rule out the ones for which there is no feasible solution.
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We now will show that Program 3 and Program 4 are equivalent in the sense that the same
allocations are feasible in both programs. By allocation we mean a probability distribution
over transfer, storage, and promised future utilities. In order to prove this claim, we will
start with an allocation that satisfies the constraints in Program 3 and then show that this
allocation is also feasible in Program 4. Afterwards, we will start with an allocation that
is feasible in Program 4, and then show that it is also feasible in Program 3. Since in
both Programs the planner has the same objective of maximizing surplus, this result also
implies that the maximizing allocation will be the same in both programs, as will be the
utility of the planner.

Lemma 4 The allocations that can be implemented in Program 3 and 4 are identical.

We have now shown that Programs 1 and 2 are equivalent, that Programs 1 and 3 are
equivalent, and that Programs 3 and 4 are equivalent. We therefore have:

Corollary 1 Programs 1, 2, 3, and 4 are all equivalent.

7 Computing the Value Set

The preceding discussion was based on the assumption that the set W of feasible util-
ity vectors is known in advance. In practice, W is not known and needs to be com-
puted alongside the value function V (w; e). W can be computed with the dynamic-
programming methods described in detail in Abreu, Pierce, and Stachetti (1990), hence-
forth APS. An outline of the method follows.

We start by defining an operator B that maps nonempty compact subsets of R#E into
nonempty compact subsets of R#E. LetW0 be a nonempty compact subset ofR#E. Then
B(W0) is defined as follows:

Definition 8 A utility vector w 2 B(W0) if there exist probabilities �(�; ajw; e) and future
utilities w0(w; e; �; a) 2W0 such that (15) to (18) hold.

The key point is that utility promises are chosen from the setW0 instead of the true value
setW. Intuitively, B(W0) consists of all utility vectorsw that are feasible today (observing
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all incentive constraints), given that utility vectors from tomorrow on are drawn from the
setW0. The fact that B maps compact set into compact sets follows from the fact that all
constraints are linear and involve only weak inequalities. Clearly, the true set of feasible
utility vectors W satisfies W = B(W), thus W is a fixed point of B. The computational
approach described in APS consists of using B to define a shrinking sequence of sets that
converges toW.

To do this, we need to start with a set W0 that is known to be larger than W a priori. In
our case, this is easy to do, since consumption is bounded and therefore lifetime utility is
bounded above and below. We can chooseW0 as an interval inR#E from a lower bound
that is lower than the utility from receiving the lowest consumption forever to a number
that exceeds utility from consuming the highest consumption forever. We can now define
a sequence of sets Wn by defining Wn+1 as Wn+1 = B(Wn). We have the following
results:

Proposition 7

� The sequenceWn is shrinking, i.e., for any n,Wn+1 is a subset ofWn.

� For all n,W is a subset ofWn.

� The sequenceWn converges to a limit �W, andW is a subset of �W.

Up to this point, we know that Wn converges to �W and that W is a subset of �W. What
we want to show is that �W and W are actually identical. What we still need to show,
therefore, is that �W is also a subset ofW.

Proposition 8 The limit set �W is a subset of the true value setW.
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A Proofs for all Propositions

Proposition 1 There are reservation utilities W0 2 R such that an optimal equilibrium exists.

Proof of Proposition 1 We need to show that for someW0 the set of equilibria is nonempty
and compact, and the objective function is continuous. To see that the set of equilibria is
nonempty, notice that the planner can assign a zero transfer in all periods, and always
send the same message. If the strategy of the agent is to choose the actions that are op-
timal under autarky, clearly all constraints are trivially satisfied for the corresponding
initial utility W0. The set of all contracts that satisfy the probability-measure constraints
is compact in the product topology, since � and � are probability measures on finite sup-
port. Since only equalities and weak inequalities are involved, it can be shown that the
constraints (3), (4), and (5) define a closed subset of this set. Since closed subsets of com-
pact sets are compact, the set of all feasible contracts is compact. We still need to show that
the objective function of the planner is continuous. Notice that the product topology cor-
responds to pointwise convergence, i.e., we need to show that for a sequence of contracts
that converges pointwise, the surplus of planner converges. This is easy to show since we
assume that the discount factor of the planner is smaller than one, and that the set of trans-
fers is bounded. Let �n; �n, be a sequence of contracts that converges pointwise to �; �,
and choose � > 0. We have to show that there is an N such that jV (�n; �n)� V (�; �)j < �.
Since the transfer � is bounded and Q < 1, there is an T such that the discounted sur-
plus of the planner from time T on is smaller than �=2. Thus we only have to make the
difference for the first T periods smaller than �=2, which is the usual Euclidian finite-
dimensional case. 2

Proposition 2 (Revelation Principle) For any message spaces M1, M2, and M3, any alloca-
tion that is feasible in the general mechanism is also feasible in the truth-telling-and-obedience
mechanism.

Proof of Proposition 2 Corresponding to any feasible allocation in the general setup there
is a feasible contract that implements this allocation. Fix a feasible allocation and the
corresponding contract f�; �g. We will now define an outcome function �

? for the truth-
telling mechanism that implements the same allocation. To complete the proof, we then
have to show that this outcome function satisfies constraints (7) to (9).
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We will define the outcome function such that the allocation is the one implemented by
(�; �) along the equilibrium path. To do that, let H t(st) be the set of histories ht in the
general game such that the sequence of endowments, transfers, and actions in h

t coin-
cides with the sequence of reported endowments, transfers, and recommended actions in
history s

t in the restricted game. Likewise, define p(htjst) as the probability of history h
t

conditional on s
t:

p(htjst) �
p(ht)P

Ht(st) p(h
t)

(69)

If st has zero probability (that is, if the sequence st of endowments, transfers, and actions
occurs with probability zero in the allocation implemented by f�; �g), the definition of
p(htjst) is irrelevant, and is therefore left unspecified. Now we define an outcome function
for the truth-telling mechanism by:

�
?(�t; atjet; s

t�1) �
X

Ht�1(st�1);M1;M2;M3

p(ht�1jst�1) �(m1tjet; h
t�1) �(�tjm1t; s

t�1(ht�1))

�(m2tjet; m1t; �t; h
t�1) �(m3tjm1t; �t; m2t; s

t�1(ht�1)) �(atjet; m1t; �t; m2t; m3t; h
t�1): (70)

Basically, the outcome function is gained by integrating out the message spaces M1, M2,
and M3 and prescribing the outcomes that occur on the equilibrium path.

We now have to verify that with this choice of an outcome function conditions (7) to (9)
above are satisfied. In showing this, we can make use of the fact that f�; �g are probability
measures and satisfy (3), (4), and (5).

We start with the probability-measure constraint (7). Fix s
t�1 and et. Definition (69) im-

plies: X
Ht�1

p(h
t�1
js
t�1

) = 1: (71)

Since the elements of f�; �g form probability measures, they sum up to one. We can
therefore insert the sum over f�; �g into (71) to get:

X
Ht�1

p(h
t�1
js
t�1

)

� X
M1;T;M2;M3;A

�(m1tjet; h
t�1

) �(�tjm1t; s
t�1

(h
t�1

))

�(m2tjet; m1t; �t; h
t�1) �(m3tjm1t; �t; m2t; s

t�1(ht�1)) �(atjet; m1t; �t; m2t; m3t; h
t�1)

�
= 1:
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By a change in the order of summation, this is:

X
T;A

� X
Ht�1(st�1);M1;M2;M3

p(ht�1jst�1) �(m1tjet; h
t�1) �(�tjm1t; s

t�1(ht�1))

�(m2tjet; m1t; �t; h
t�1

) �(m3tjm1t; �t; m2t; s
t�1

(h
t�1

)) �(atjet; m1t; �t; m2t; m3t; h
t�1

)

�
= 1:

The inner sum is the right-hand side of (70). Replacing the sum by the left-hand side of
(70) we get: X

T;A

�
?
(�t; atjet; s

t�1
) = 1;

which is (7).

The promise-keeping constraint (8) is next. Writing out (5) gives:

1X
t=0

�
t

"X
Ht

p(htj�; �)u(et + �t � at)

#
� W0:

Because of (69) and (70), the probability of any history is the same under �? as under
(�; �). Thus the constraint can be written as:

1X
t=0

�
t

"X
Ht

p(htj�?)u(et + �t � at)

#
� W0:

Rearranging the sum gives:

1X
t=0

�
t

2
4X

St

� X
Ht(st)

p(h
t
j�

?
)u(et + �t � at)

�35 � W0;

which can also be written as:

1X
t=0

�
t

2
4X

St

� X
Ht(st)

p(h
t
js
t
)p(s

t
j�

?
)u(et + �t � at)

�35 � W0:

Because of (69), we have
P

Ht(st) p(h
t
js
t) = 1. We therefore get:

1X
t=0

�
t

"X
St

p(stj�?)u(et + �t � at)

#
� W0;
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which is (8).

The last step is to show that the incentive constraint (9) is satisfied. Fix a node sk and ek+1

and a deviation Æe; Æa. Given this deviation, we define an equivalent deviation strategy �̂

in the original setup, namely:

�̂(m1tjet; h
t�1) � �(m1tjÆe(h

t�1
; et); h

t�1);

�̂(m2tjet; m1t; �t; h
t�1) � �(m2tjÆe(h

t�1
; et); m1t; �t; h

t�1);

and:

�̂(atjet; m1t; �t; m2t; m3t; h
t�1

) �
X

f~a2Ajat=Æa(ht�1;et;�t;~at)g

�(~atjÆe(h
t�1

; et); m1t; �t; m2t; m3t; h
t�1

):

On all branches other than s
k and ek+1, we define �̂ as equal to �, i.e., the agent does

not actually deviate on other branches. Writing out (3) for this deviation and a given
h
k
2 H

k(sk) gives:

1X
t=k+1

�
t

"X
Ht

p(htj�; �̂; hk)u(et + �t � at)

#

�

1X
t=k+1

�
t

"X
Ht

p(htj�; �; hk)u(et + �t � at)

#
: (72)

Since (72) holds for all hk 2 H
k(sk), we can multiply by p(hkjsk) and sum over Hk(sk) on

both sides, resulting in a version in which probabilities are conditioned on s
k instead of

h
k:

1X
t=k+1

�
t

"X
Ht

p(htj�; �̂; sk)u(et + �t � at)

#

�

1X
t=k+1

�
t

"X
Ht

p(htj�; �; sk)u(et + �t � at)

#
: (73)

Also, on branches other than ek+1 by the construction of �̂ the left- and right-hand-side
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terms are identical. Thus the inequality remains intact if we also condition on ek+1:

1X
t=k+1

�
t

"X
Ht

p(h
t
j�; �̂; s

k
; ek+1)u(et + �t � at)

#

�

1X
t=k+1

�
t

"X
Ht

p(h
t
j�; �; s

k
; ek+1)u(et + �t � at)

#
: (74)

Because of (69) and (70), the probability of any history on the right-hand side of the equa-
tion is the same under (�; �) as under �? in the restricted setup. On the left-hand side, by
the construction of �̂ the probabilities are the same as under the deviation Æ = (Æe; Æa) in
the restricted setup. We can therefore rewrite (74) as:

1X
t=k+1

�
t

"X
Ht

p(htj�?; Æ; sk; ek+1)u(et + �t � Æa(h
t�1

; et; �t; at))

#

�

1X
t=k+1

�
t

"X
Ht

p(htj�?; sk; ek+1)u(et + �t � at)

#
: (75)

Rewriting the sum on the right-hand side gives:

1X
t=k+1

�
t

"X
Ht

p(htj�?; Æ; sk; ek+1)u(et + �t � Æa(h
t�1

; et; �t; at))

#

�

1X
t=k+1

�
t

2
4X

St

X
Ht(st)

p(htjst)p(stj�?; sk; ek+1)u(et + �t � at)

3
5 ;

and because of (69) we get:

8Æ; s
k
; ek+1 :

1X
t=k+1

�
t

"X
Ht

p(h
t
j�

?
; Æ; s

k
; ek+1)u(et + �t � Æa(h

t�1
; et; �t; at))

#

�

1X
t=k+1

�
t

"X
St

p(stj�?; sk; ek+1)u(et + �t � at)

#
;

which is (9).

In summary, the contract defined in (70) satisfies constraints (7) to (9), which completes
the proof. 2
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Proposition 3 The setW is nonempty and compact.

Proof of Proposition 3 To see that W is nonempty, notice that the planner can always
assign a zero transfer in every period, and recommend the optimal action that the agent
would have chosen without the planner. For the w0(e) that equals the expected utility
of the agent under autarky under state e, all constraints are satisfied. To see that W
is bounded, notice that there are finite grids for the endowment, the transfer, and the ac-
tion. This implies that in every period consumption and therefore utility is bounded from
above and from below. Since the discount factor � is smaller than one, total expected util-
ity is also bounded. Since each w0(e) has to satisfy a promise-keeping constraint with
equality, the setW must be bounded. Finally, we can show thatW is closed by a contra-
diction argument. Assume thatW is not closed. Then there exists a converging sequence
wn such that each element of the sequence is inW, but its limit w is not. Corresponding
to each wn there is a contract �(�t; atjet; st�1)n satisfying constraints (7), (8), and (9). Since
the contracts are within a compact subset of R1 with respect to the product topology,
there is a convergent subsequence with limit �(�t; atjet; st�1). It then follows that w must
satisfy (7), (8), and (9) when �(�t; atjet; s

t�1) is the chosen contract. 2

Proposition 4 For allw0 2W and e0 2 E, and for any sk�1 and ek, there is an optimal contract
�
? such that the remaining contract from s

k�1 and ek is an optimal contract for the auxiliary
planning problem with e0 = ek and w0 = w(s

k�1
; �

?).

Proof of Proposition 4 We will first construct �? from a contract which is optimal from
time zero and another contract which is optimal starting at sk�1 and ek. We will then show
by a contradiction argument that �? is an optimal contract from time zero as well.

We have shown earlier that an optimal contract exists. Let � be an optimal contract from
time zero, and �k an optimal contract for e0 = ek andw0 = w(s

k�1
; �), with the elements of

vectorw(sk�1; �) defined in (13). Now construct a new contract �? that is equal to �k from
(ek; s

k�1) on, and equals � until time k and on all future branches other than ek; s
k�1. First

notice that by the way �
? is constructed, we have w(sk�1; �) = w(sk�1; �?), and since �?

equals �k from (ek; s
k�1), �? fulfills the reoptimization requirement of the proposition. We

now claim that �? is also an optimal contract. To show this, we have to demonstrate that
�
? satisfies constraints (7), (8), and (9), and that it maximizes the surplus of the planner

subject to these constraints. To start, notice that the constraints that are imposed if we
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compute an optimal contract taking e0 = ek and w0 = w(sk�1; �) as the starting point
also constrain the choices of the planner in the original program from (ek; s

k�1) on. By
reoptimizing at (ek; sk�1) in period k as if the game were restarted, the planner clearly
cannot lower his surplus, since no additional constraints are imposed. Therefore the total
surplus from contract �? cannot be lower than the surplus from �. Since � is assumed to
be an optimal contract, if �? satisfies (7), (8), and (9), it must be optimal as well. Thus we
only have to show that (7), (8), and (9) are satisfied, or in other words, that reoptimizing
at ek; sk�1 does not violate any constraints of the original problem.

The probability constraints (7) are satisfied by contract �?, since the reoptimized con-
tract is subject to the same probability constraints as the original contract. The promise-
keeping constraint (8) is satisfied since the new contract delivers the same on-path utilities
by construction. We still have to show that the incentive constraints (9) are satisfied. We
will do this by contradiction. Suppose that (9) is not satisfied by contract �?. Then there
is a deviation Æ such that for some sl; el+1:

1X
t=l+1

�
t

"X
Ht

p(htj�?; Æ; sl; el+1)u(et + �t � Æa(h
t�1

; et; �t; at))

#

>

1X
t=l+1

�
t

"X
St

p(stj�?; sl; el+1)u(et + �t � at)

#
: (76)

Consider first the case l + 1 � k. On any branch that starts at or after time k, contract �?

is by construction entirely identical to either � or �k. But then (76) implies that either � or
�k violates incentive-compatibility (9), a contradiction. Consider now the case l + 1 < k.
Here the contradiction is not immediate, since the remaining contract is a mixture of �
and �k. Using w(ek; s

k�1
; Æ) to denote the continuation utility of the agent from time k on

under the deviation strategy, we can rewrite (76) as:

k�1X
t=l+1

�
t

"X
Ht

p(h
t
j�

?
; Æ; s

l
; el+1)u(et + �t � Æa(h

t�1
; et; �t; at))

#
+

�
k

X
E;sk�1

p(ek; s
k�1

j�
?
; Æ; s

l
; el+1)w(ek; s

k�1
; Æ)

>

k�1X
t=l+1

�
t

"X
St

p(stj�?; sl; el+1)u(et + �t � at)

#
+ �

k
X

E;sk�1

p(ek; s
k�1

j�
?
; s

l
; el+1)w(ek; s

k�1):

(77)
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Notice that for sk�1 that are reached with positive probability under the deviation we
have:

w(ek; s
k�1

; Æ) � w(ek; Æ(s
k�1)); (78)

where Æ(sk) is the history as seen by the planner (reported endowments, delivered trans-
fers, and recommended actions) under the deviation strategy. Otherwise, either � or �k
would violate incentive constraints. To see why, assume that ek; sk�1 is a branch after
which �

? is identical to �. If we had w(ek; s
k�1

; Æ) > w(ek; Æ(s
k�1)), an agent under con-

tract � who reached history Æ(sk�1) could gain by following the deviation strategy Æ after-
wards. This cannot be the case since � is assumed to be an optimal contract, and therefore
deviations are never profitable. Using (78) in (77) gives:

k�1X
t=l+1

�
t

"X
Ht

p(htj�?; Æ; sl; el+1)u(et + �t � Æa(h
t�1

; et; �t; at))

#
+

�
k

X
E;sk�1

p(ek; s
k�1

j�
?
; Æ; s

l
; el+1)w(ek; Æ(s

k�1))

>

k�1X
t=l+1

�
t

"X
St

p(stj�?; sl; el+1)u(et + �t � at)

#
+ �

k
X

E;sk�1

p(ek; s
k�1

j�
?
; s

l
; el+1)w(ek; s

k�1):

(79)

The outcome function �
? enters (79) only up to time k � 1. Since up to time k � 1 the

outcome function �
? is identical to �, and since by construction of �? continuation utilities

at time k are the same under �? and �, we can rewrite (79) as:

k�1X
t=l+1

�
t

"X
Ht

p(htj�; Æ; sl; el+1)u(et + �t � Æa(h
t�1

; et; �t; at))

#
+

�
k
X

E;sk�1

p(ek; s
k�1

j�; Æ; s
l
; el+1)w(ek; Æ(s

k�1))

>

k�1X
t=l+1

�
t

"X
St

p(stj�; sl; el+1)u(et + �t � at)

#
+ �

k

X
E;sk�1

p(ek; s
k�1

j�; s
l
; el+1)w(ek; s

k�1):

(80)

But now the left-hand side of (80) is the utility that the agent gets under plan � from
following the deviation strategy until time k, and following the recommendations of the
planner afterwards. Thus (80) contradicts the incentive compatibility of �. We obtain a
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contradiction, �? actually satisfies (9). This shows that plan �
? is within the constraints

of the original problem. Since �? yields at least as much surplus as � and � is an optimal
contract, �? must be optimal as well. 2

Lemma 1 For any message spaces M1, M2, and M3, any allocation that is feasible in the general
mechanism is also feasible in the truth-telling mechanism with double reporting.

Proof of Lemma 1 As above, we will start with a feasible allocation in the general setup,
and then find the outcome function in the restricted setup which implements the same
allocation. Fix this contract (�; �) corresponding to the feasible allocation in the general
setup. We will now define an outcome function �

? for the truth-telling-and-obedience
mechanism that implements the same allocation. To complete the proof, we then will
have to show that this outcome function satisfies constraints (28) to (32).

We will define the outcome function such that the allocation is the one implemented by
(�; �) along the equilibrium path. Let H t(st) be the set of the histories ht in the general
setup such that the sequence of endowments, transfers, and actions in h

t coincides with
the sequence of second reported endowments, transfers, and recommended actions in his-
tory s

t of the restricted game. For ht 2 H
t(st), p(htjst) is the probability of agent’s history

h
t conditional on on the planner’s history s

t, as in (69) above:

p(htjst) �
p(ht)P

Ht(st) p(h
t)

(81)

For the case that both reports coincide, the probabilities reproduce the original equilib-
rium path. For differing reports, we will define the outcome function (and therefore prob-
abilities) such that the second report corresponds to the true endowment, while the agent
was “mistaken” at the first report. This is also the reason that the second report needs
to coincide to the endowment in the history h

t in the definition of H t(st) above. The
probabilities p(htjst) are then defined recursively as:

p(h
t
js
t
) � p(h

t�1
(h

t
)js

t�1
(h

t
))p(e2tjh

t�1
)X

M1;M2;M3

�(m1tje1t; h
t�1) �(�tjm1t; s

t�1(ht�1))

�(m2tje2t; m1t; �t; h
t�1) �(m3tjm1t; �t; m2t; s

t�1(ht�1)) �(atje2t; m1t; �t; m2t; m3t; h
t�1): (82)
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Notice that the actual endowment e2t governs the second report, while the first report is
governed by a potentially different endowment e1t. Analogously, we define an outcome
function for the truth-telling-and-obedience mechanism by:

�
?(�t; atje1t; e2t; s

t�1) �
X

Ht�1(st�1)M1;M2;M3

p(ht�1jst�1) �(m1tje1t; h
t�1) �(�tjm1t; s

t�1(ht�1))

�(m2tje2t; m1t; �t; h
t�1) �(m3tjm1t; �t; m2t; s

t�1(ht�1)) �(atje2t; m1t; �t; m2t; m3t; h
t�1): (83)

We now have to verify that with this choice of an outcome function conditions (28) to (32)
above are satisfied.

(83) is identical to (70) as long as the same endowment is reported twice. Since the
promise-keeping constraint (30) only involves on-path predictions, the proof for show-
ing that (30) is identical to the one for the promise-keeping constraint (8) in the proof of
Proposition 2. The proof for the probability constraint (28) is identical as well. We there-
fore proceed to the consistency constraint (29). Fix �t, e1t, e2t, �e2t, and s

t�1. We start with
the following identity (left- and right-hand sides are identical):

X
Ht�1(st�1);M1

p(ht�1jst�1) �(m1tje1t; h
t�1) �(�tjm1t; s

t�1(ht�1))

=
X

Ht�1(st�1)M1

p(ht�1jst�1) �(m1tje1t; h
t�1) �(�tjm1t; s

t�1(ht�1)):

Since the elements of (�; �) form probability measures, they sum to one. Therefore the
equation remains intact if we insert sums over (�; �) on both sides:

X
Ht�1(st�1);M1

p(h
t�1
js
t�1

) �(m1tje1t; h
t�1

) �(�tjm1t; s
t�1

(h
t�1

))

" X
M2;M3;A

�(m2tje2t; m1t; �t; h
t�1)�(m3tjm1t; �t; m2t; s

t�1(ht�1))�(atje2t; m1t; �t; m2t; m3t; h
t�1)

#

=
X

Ht�1(st�1);M1

p(ht�1jst�1) �(m1tje1t; h
t�1) �(�tjm1t; s

t�1(ht�1))

" X
M2;M3;A

�(m2tj�e2t; m1t; �t; h
t�1)�(m3tjm1t; �t; m2t; s

t�1(ht�1))�(atj�e2t; m1t; �t; m2t; m3t; h
t�1)

#
:
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Changing the order of summation gives:

X
A

� X
Ht�1(st�1);M1;M2;M3

p(ht�1jst�1) �(m1tje1t; h
t�1) �(�tjm1t; s

t�1(ht�1))

�(m2tje2t; m1t; �t; h
t�1

) �(m3tjm1t; �t; m2t; s
t�1

(h
t�1

)) �(atje2t; m1t; �t; m2t; m3t; h
t�1

)

�

=
X
A

� X
Ht�1(st�1);M1;M2;M3

p(ht�1jst�1) �(m1tje1t; h
t�1) �(�tjm1t; s

t�1(ht�1))

�(m2tj�e2t; m1t; �t; h
t�1

) �(m3tjm1t; �t; m2t; s
t�1

(h
t�1

)) �(atj�e2t; m1t; �t; m2t; m3t; h
t�1

)

�
:

The inner sum is the right-hand side of (83). Replacing it by the left-hand side gives:

X
A

�
?(�t; atje1t; e2t; s

t�1) =
X
A

�
?(�t; atje1t; �e2t; s

t�1);

which is (29).

We now move to the incentive constraints. We will follow the same approach as in the
proof of Proposition 2. Fix a node s

k and ek+1 and a deviation Æe1; Æe2; Æa. Given this
deviation, we define an equivalent deviation strategy �̂ in the original setup, namely:

�̂(m1tjet; h
t�1

) � �(m1tjÆe1(h
t�1

; et); h
t�1

);

�̂(m2tjet; m1t; �t; h
t�1

) � �(m2tjÆe2(h
t�1

; et; �t); m1t; �t; h
t�1

);

and:

�̂(atjet; m1t; �t; m2t; m3t; h
t�1) �

X
f~a2Ajat=Æa(ht�1;et;�t;~at)g

�(~atjÆe2(h
t�1

; et; �t); m1t; �t; m2t; m3t; h
t�1):

On all branches other than s
k and ek+1, we define �̂ as equal to �, i.e., the agent does not

actually deviate on other branches. We now start by deriving (31), and then turn to (32).
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Writing out (3) for deviation �̂ and a given h
k
2 H

k(sk) gives:

1X
t=k+1

�
t

"X
Ht

p(h
t
j�; �̂; h

k
)u(et + �t � at)

#

�

1X
t=k+1

�
t

"X
Ht

p(h
t
j�; �; h

k
)u(et + �t � at)

#
: (84)

By the same argument used in Proposition 2, inequality (84) implies:

1X
t=k+1

�
t

"X
Ht

p(htj�; �̂; sk; ek+1)u(et + �t � at)

#

�

1X
t=k+1

�
t

"X
Ht

p(htj�; �; sk; ek+1)u(et + �t � at)

#
: (85)

Because of (81) and (83), the probability of any history on the right-hand side of the equa-
tion is the same under (�; �) as under �? in the restricted setup. On the left-hand side, by
the construction of �̂ the probabilities are the same as under the deviation Æ = (Æe1; Æe2; Æa)

in the restricted setup. We can therefore rewrite (85) as:

1X
t=k+1

�
t

"X
Ht

p(htj�?; Æ; sk; ek+1)u(et + �t � Æa(h
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#
: (86)

Rewriting the sum on the right-hand side as above we get:

8Æ; s
k
; ek+1 :

1X
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#

�

1X
t=k+1

�
t

"X
St

p(s
t
j�

?
; s
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#
;

which is (31). The argument for the second incentive constraint (32) follows the same
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outline. Starting from (4), we get by the same steps as above:
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; ek+1)u(et + �t � Æa(h
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Ht

p(htj�; �; sk; ek+1)u(et + �t � at)

#
:

Using (83) on the right-hand side and otherwise the same steps, this can be transformed
into:
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p(htj�; Æ; sk; ek+1)u(et + �t � Æa(h
t�1

; et; �t; at))

#

� �
k+1

"X
T;A

�
�
�k+1; ak+1jÆe1(h

k
; ek+1); ek+1; s

k
�
u(ek+1 + �k+1 � ak+1)

#

+

1X
t=k+2

�
t

"X
St

p(stj�; sk; ek+1)u(et + �t � at)

#
;

which is (32). 2

Lemma 2 The setW is nonempty and compact.

Proof of Lemma 2 (See proof of Proposition 3)

Lemma 3 For all w0 2W and e0 2 E, and for any sk�1 and ek, there is an optimal contract �?

such that the remaining contract from s
k�1 and ek is an optimal contract for the auxiliary planning

problem with e0 = ek and w0 = w(s
k�1

; �
?).

Proof of Lemma 3 We will first construct �? from a contract which is optimal from time
zero and another contract which is optimal starting at sk�1 and ek. We will then show by
a contradiction argument that �? is an optimal contract at time zero as well.
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We have shown earlier that an optimal contract exists. Let � be an optimal contract from
time zero, and �k an optimal contract for e0 = ek and w0 = w(sk�1; �). Now construct
a new contract �? that is equal to �k from (ek; s

k�1) on, and equals � until time k and on
all branches other than ek; s

k�1. First notice that by the way �
? is constructed, we have

w(sk�1; �) = w(sk�1; �?), and since �? equals �k from (ek; s
k�1), �? fulfills the reoptimiza-

tion requirement of the proposition. We now claim that �? is an optimal contract at time
zero. To show this, we have to demonstrate that �? satisfies constraints (28), (29), (31), (32),
and (34), and that it maximizes the surplus of the planner subject to these constraints. To
start, notice that the constraints that are imposed if we compute an optimal contract tak-
ing e0 = ek and w0 = w(sk�1; �) as the starting point also constrain the choices of the
planner in the original program from (ek; s

k�1) on. By reoptimizing at (ek; sk�1) as if the
game were restarted, the planner clearly cannot lower his surplus, since no additional
constraints are imposed. Therefore the total surplus from contract �? cannot be lower
than the surplus from �. Since � is assumed to be an optimal contract, if �? satisfies (28),
(29), (31), (32), and (34), it must be optimal as well. Thus we only have to show that (28),
(29), (31), (32), and (34) are satisfied, or in other words, that reoptimizing at ek; sk�1 does
not violate any constraints of the original problem.

The probability and consistency constraints (28) and (29) are satisfied by contract �?, since
the reoptimized contract is subject to the same probability constraints as the original con-
tract. The promise-keeping constraint (34) is satisfied since the new contract delivers the
same on-path utilities by construction. We still have to show that the incentive constraints
(31) and (32) are satisfied. We will do this by contradiction.

Suppose that (31) is not satisfied by contract �?. Then there is a deviation Æe1(et; s
t�1),

Æe2(et; s
t�1), Æa(st) such that:

1X
t=l+1

�
t

"X
Ht

p(htj�?; Æ; sl; el+1)u(et + �t � Æa(h
t�1

; et; �t; at))

#

>

1X
t=l+1

�
t

"X
St

p(stj�?; sl; el+1)u(et + �t � at)

#
: (87)

Consider first the case l + 1 � k. On any branch that starts at or after time k, contract �?

is by construction entirely identical to either � or �k. But then (87) implies that either � or
�k violates incentive-compatibility (31), a contradiction. Consider now the case l + 1 < k.
Here the contradiction is not immediate, since the remaining contract is a mixture of �

50



and �k. Using w(ek; s
k�1

; Æ) to denote the continuation utility of the agent from time k on
under the deviation strategy, we can rewrite (87) as:

k�1X
t=l+1

�
t

"X
Ht

p(h
t
j�

?
; Æ; s

l
; el+1)u(et + �t � Æa(h

t�1
; et; �t; at))

#
+

�
k

X
E;sk�1

p(ek; s
k�1

j�
?
; Æ; s

l
; el+1)w(ek; s

k�1
; Æ)

>

k�1X
t=l+1

�
t

"X
St

p(stj�?; sl; el+1)u(et + �t � at)

#
+ �

k
X

E;sk�1

p(ek; s
k�1

j�
?
; s

l
; el+1)w(ek; s

k�1):

(88)

Notice that for sk�1 that are reached with positive probability under the deviation we
have:

w(ek; s
k�1

; Æ) � w(ek; Æ(s
k�1)); (89)

where Æ(sk) is the history as seen by the planner (reported endowments, delivered trans-
fers, and recommended actions) under the deviation strategy. Otherwise, either � or �k
would violate incentive constraints. To see why, assume that ek; sk�1 is a branch after
which �

? is identical to �. If we had w(ek; s
k�1

; Æ) > w(ek; Æ(s
k�1)), an agent under con-

tract � who reached history Æ(sk�1) could gain by following the deviation strategy Æ after-
wards. This cannot be the case since � is assumed to be an optimal contract, and therefore
deviations are never profitable. Using (89) in (88) gives:

k�1X
t=l+1

�
t

"X
Ht

p(htj�?; Æ; sl; el+1)u(et + �t � Æa(h
t�1

; et; �t; at))

#
+

�
k
X

E;sk�1

p(ek; s
k�1

j�
?
; Æ; s

l
; el+1)w(ek; Æ(s

k�1))

>

k�1X
t=l+1

�
t

"X
St

p(stj�?; sl; el+1)u(et + �t � at)

#
+ �

k

X
E;sk�1

p(ek; s
k�1

j�
?
; s

l
; el+1)w(ek; s

k�1):

(90)

The outcome function �
? enters (90) only up to time k � 1. Since up to time k � 1 the

outcome function �
? is identical to �, and since by construction of �? continuation utilities
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at time k are the same under �? and �, we can rewrite (90) as:

k�1X
t=l+1

�
t

"X
Ht

p(htj�; Æ; sl; el+1)u(et + �t � Æa(h
t�1

; et; �t; at))

#
+

�
k

X
E;sk�1

p(ek; s
k�1

j�; Æ; s
l
; el+1)w(ek; Æ(s

k�1))

>

k�1X
t=l+1

�
t

"X
St

p(stj�; sl; el+1)u(et + �t � at)

#
+ �

k
X

E;sk�1

p(ek; s
k�1

j�; s
l
; el+1)w(ek; s

k�1):

(91)

But now the left-hand side of (91) is the utility that the agent gets under plan � from
following the deviation strategy until time k, and following the recommendations of the
planner afterwards. Thus (91) contradicts the incentive compatibility of �. We obtain a
contradiction, �? actually satisfies (31). The proof for constraints (32) follows the same
lines. This shows that plan �

? is within the constraints of the original problem. Since �?

yields at least as much surplus as � and � is an optimal contract, �? must be optimal as
well. 2

Proposition 5 Program 1 and Program 2 are equivalent.

Proof of Proposition 5 Propositions 2 and 4 established that Program 1 is equivalent to
the general planning problem, and Lemmas 1 and 3 do the same for Program 2. The
programs are therefore equivalent to each other.

Proposition 6 Program 1 and Program 3 are equivalent.

Proof of Proposition 6 We want to show that constraints (53)-(57) in Program 3 place the
same restrictions on the outcome function �(�) as the constraints (21)-(24) of Program 1.
The probability constraints (21) and (53), the promise-keeping constraints (22) and (54),
and the obedience constraints (23) and (55) are identical. This leaves us with the truth-
telling constraints. Let us first assume we have found a lottery �(�; a;w0

jw; e) that satisfies
the truth telling constraint (24) of Program 1 for all ê and Æ : T �S ! A. We have to show
that there exist utility bounds v(ê; e; �; a) such that the same lottery satisfies (56) and (57)
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in Program 3. For each ê, � , and a, define v(ê; e; �; a) as the maximum of the left hand side
of (56) over all â:

v(ê; e; �; a) � max
â

(X
W

0

�(�; a;w0
jw; e)

h
u(ê+ � � â) + �

X
E

p(e0jâ)w0(e0)

i)
: (92)

Then clearly (56) is satisfied, since the left-hand side of (56) runs over â. Now for each �

and a, define Æ̂(�) by setting Æ̂(�; a) equal to the â that maximizes the left-hand side of (56):

Æ̂(�; a) � argmax
â

(X
W

0

�(�; a;w0
jw; e)

h
u(ê+ � � â) + �

X
E

p(e0jâ)w0(e0)

i)
: (93)

Since �(�; a;w0
jw; e) satisfies (24) for any function Æ(�) by assumption, we have for our

particular Æ̂(�):

X
T;A;W0

�(�; a;w0
jw; e)

h
u(ê+ � � Æ̂(�; a)) + �

X
E

p(e0jÆ̂(�; a))w0(e0)

i
� w(ê): (94)

By the way we chose Æ̂(�) and the v(�), we have from (56):

X
W

0

�(�; a;w0
jw; e)

h
u(ê+ � � Æ̂(�; a)) + �

X
E

p(e0jÆ̂(�; a))w0(e0)

i
= v(ê; e; �; a): (95)

Substituting the left-hand side into (94), we get:

X
T;A

v(ê; e; �; a) � w(ê): (96)

which is (57).

Conversely, suppose we have found a lottery �(�; a;w0
jw; e) that satisfies (56) and (57) in

Program 3 for some choice of v(ê; e; �; a). By (56), we have then for any ê and â and hence
any Æ : T � S ! A:

X
W

0

�(�; a;w0
jw; e)

h
u(ê+ � � Æ(�; a)) + �

X
E

p(e0jÆ(�; a))w0(e0)

i
� v(ê; e; �; a): (97)

Substituting the left-hand side of (97) into the assumed (57) for the v(ê; e; �; a), we main-
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tain the inequality:

X
T;A;W0

�(�; a;w
0
jw; e)

h
u(ê+ � � Æ(�; a)) + �

X
E

p(e
0
jÆ(�; a))w

0
(e
0
)

i
� w(ê): (98)

But this is (24) in Program 1. Therefore the sets of constraints are equivalent, which proves
that Program 1 and Program 3 are equivalent. 2

Lemma 4 The allocations that can be implemented in Program 3 and 4 are identical.

Proof of Lemma 4 Assume that for a given vector of promised utilities w and a given
true state e we have found an allocation �

?(�; a;w0
jw; e) that satisfies the constraints (53)-

(57) of Program 3 for some specification of utility bounds v?(ê; e; �; a). Here and below
the ? denotes a solution to Program 3. We now need to find contracts and utility bounds
for Programs 4a and 4b that implement the same allocation. The contracts that we choose
have the property that the planner does not randomize over intermediate utilities in Pro-
gram 4a. Given a transfer � , one specific vector of intermediate utilities is assigned in
Program 4a. Given this transfer and intermediate utility vector, in Program 4b the cor-
rect distribution over storage and future utilities is implemented. We will first describe
which lotteries over storage and promised utilities to choose in stage 4b, and then move
backwards to Program 4a.

At stage 4b, the planner recommends an action and assigns a vector of promised utilities,
conditional on the transfer and the vector of interim utilities that were assigned at 4a.
Since we will choose contracts at stage 4a that do not randomize over interim utilities,
for each transfer � we have to specify only one contract at stage 4b. Fix the transfer � .
We want to find a contract �(a;w0) that implements the same distribution over a and w0,
conditional on � , as �?(�; a;w0

jw; e). In order to do this, define:

�(a;w
0
) �

�
?(�; a;w0

jw; e)P
A�W0

�?(�; a;w0
jw; e)

: (99)

We also have to define the utility bounds. Our choices are:

v(ê; e; �; a) �
v
?(ê; e; �; a)P

A�W0
�?(�; a;w0

jw; e)
: (100)

These choices also correspond to a specific vector of interim utilities. We choose these
utilities to ensure that all constraints in Program 4b are satisfied. We write these utilities

54



as a function of � so that we can identify which interim utilities correspond to which
transfers in Program 4a. Specifically, we let:

wm(e)(�) �
X
A;W0

�(a;w0)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i
; (101)

where the �(a;w0) are defined in (99). For each ê, we define

�wm(ê; e)(�) �
X
A

v(ê; e; �; a); (102)

where the v(ê; e; �; a)) are defined in (100). We now have to show that all constraints
Program 4b are satisfied. We can use the fact that �?(�; a;w0

jw; e) and the v
?(ê; e; �; a)

satisfy all constraints in Program 3.

We will start with the probability constraint (63). Substituting (99) into the left-hand side
of (63), we get: P

A�W0
�
?(�; a;w0

jw; e)P
A�W0

�?(�; a;w0
jw; e)

= 1; (103)

which on the left-hand side clearly equals unity. Therefore (63) is satisfied. The promise-
keeping constraint (64) is identical to (101) and therefore also satisfied. We now move to
the obedience constraint (65). Substituting our definition (99) into what one would like to
show, namely (65), we need to establish:

X
W

0

�
?(�; a;w0

jw; e)P
A�W0

�?(�; a;w0
jw; e)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i

�

X
W

0

�
?(�; a;w0

jw; e)P
A�W0

�?(�; a;w0
jw; e)

h
u(e+ � � â) + �

X
E

p(e
0
jâ)w

0
(e
0
)

i
;

or, equivalently, by pulling out the common constant in the denominator:

X
W

0

�
?(�; a;w0

jw; e)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i

�

X
W

0

�
?
(�; a;w

0
jw; e)

h
u(e+ � � â) + �

X
E

p(e
0
jâ)w

0
(e
0
)

i
: (104)

This is (55) in Program 3 and therefore by assumption satisfied. Next, substituting our
definitions (99) and (100) into what we would like to show, namely (66), and multiplying
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by
P

A�W0
�
?(�; a;w0

jw; e) on both sides we need to establish:

X
W

0

�
?(�; a;w0

jw; e)

h
u(ê+ � � â) + �

X
E

p(e0jâ)w0(e0)

i
� v

?(ê; e; �; a); (105)

But this is (56) and therefore by assumption true. Finally, the constraints (67) are satisfied
because we defined the utility bounds in (102) accordingly. Therefore in Program 4b all
constraints are satisfied.

We now move to stage 4a. As mentioned earlier, for a given � , the contract we use does
not randomize over interim utilities. Since we have already determined which interim
utilities correspond to which transfer � , the only thing left to do is to assign probability
mass to different transfers and their associated interim utilities. We choose the contract
such that the probability of each transfer equals the probability of that transfer in contract
�
?(�). For each � , we have:

�(�; wm(e)(�); �wm(ê; e)(�)) �
X
A;W

�
?(�; a;w0

jw; e): (106)

We set the probability of all other combinations of transfer and interim utilities to zero.
Clearly, by choosing this contract we implement the same allocation over transfer, storage,
and promised utilities as �?(�) does. We still have to check whether the constraints (59)-
(61) of Program 4a are satisfied. The first constraint (59) is the probability constraint. We
have:

X
T

X
W(e;�)

�(�; wm(e); �wm(ê; e)) =
X
T

�(�; wm(e)(�); �wm(ê; e)(�)) (107)

=
X

T;A;W0

�
?
(�; a;w

0
jw; e):

since the right-hand side of (107) is just a sum over the left-hand side of (106). Since the
�
?(�; a;w0

jw; e) satisfy (53) we have, as required:

= 1: (108)

For the promise-keeping constraint (60) we start on its left-hand side and use (99) and
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(101) to get:

X
T

X
W(e;�)

�(�; wm(e); �wm(ê; e)) wm(e)

=
X
T

�(�; wm(e)(�); �wm(ê; e)(�)) wm(e)(�)

=
X

T;A;W0

�
?(�; a;w0

jw; e) wm(e)(�)

=
X

T;A;W0

�
?(�; a;w0

jw; e)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i

= w(e); (109)

where the last equality follows because the �?(�) satisfy (54). Finally, for the truth-telling
constraint (61), using (106) and starting on its left-hand side, given any ê 6= e we get:

X
T

X
W(e;�)

�(�; wm(e); �wm(ê; e)) �wm(ê; e)

=
X
T

�(�; wm(e)(�); �wm(ê; e)(�)) �wm(ê; e)(�)

=
X

T;A;W0

�
?(�; a;w0

jw; e) �wm(ê; e)(�)

=
X

T;A;W0

�
?(�; a;w0

jw; e)

"X
A

v(ê; e; �; a)

#

by (102),

=
X

T;A;W0

�
?(�; a;w0

jw; e)

" P
A
v
?(ê; e; �; a)P

A;W0
�?(�; a;w0

jw; e)

#

because of (100). The �(�) will cancel, that is:

=
X
T

"X
A;W0

�
?(�; a;w0

jw; e)

" P
A
v
?(ê; e; �; a)P

A;W0
�?(�; a;w0

jw; e)

##

=
X
T;A

v
?(ê; e; �; a)

� w(ê): (110)

57



The last inequality follows because the v
?(�) by assumption satisfy (57). Thus all con-

straints are satisfied. Therefore an allocation that is feasible in Program 3 can always be
implemented in Program 4.

We will now show conversely that an allocation that is feasible in Program 4 is also feasi-
ble in Program 3. For a given vector of promised utilitiesw and a given true endowment,
assume that we have found contracts and utility bounds �?(�; wm; �wm), �?(a;w0)(wm; �wm),
and v

?(ê; e; �; a)(�; wm; �wm) that satisfy all constraints in Programs 4a and 4b. We use ? to
denote a solution to Program 4a and 4b and write the contracts and utility bounds for
Program 4a as a function of transfer and interim utilities to indicate to which transfer
and interim utility vector the contracts applies to. In this section, we drop the arguments
from the interim utilities in order to fit the equations on the page. We now have to find
contracts and utility bounds for Program 3 that implement the same allocation and that
satisfy constraints (53) to (57). For each � , a, w0, define as the obvious guess:

�(�; a;w0
jw; e) �

X
W(e;�)

�
?(�; wm; �wm) �

?(a;w0)(wm; �wm): (111)

Basically, we integrate out the interim utilities. We guess the following utility bounds:

v(ê; e; �; a) �
X
W(e;�)

�
?(�; wm; �wm) v

?(ê; e; �; a): (112)

Clearly, the chosen contract implements the same allocation. We have to show that the
contract and the utility bounds satisfy the constraints (53)-(57) of Program 3.

We start with the probability constraint (53). Using definition (111), we get:

X
T;A;W0

�(�; a;w0
jw; e) =

X
T;A;W

X
W(e;�)

�
?(�; wm; �wm) �

?(a;w0)(wm; �wm):

Rewriting the order of summation:

=
X
T

X
W(e;�)

�
?
(�; wm; �wm)

"X
A;W0

�
?
(a;w

0
)(wm; �wm)

#
:
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Using the probability constraint (63) in Program 4b gives:

=
X
T

X
W(e;�)

�
?
(�; wm; �wm) = 1; (113)

where, because of the probability constraint (59) in Program 4a, the left-hand side of (113)
equals unity, and thus (53) is satisfied. We now will show that the promise-keeping con-
straint (54) holds. Starting on its left-hand side and using definition (111) we get:

X
T;A;W0

�(�; a;w0
jw; e)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i

=
X

T;A;W0

X
W(e;�)

�
?(�; wm; �wm) �

?(a;w0)(wm; �wm)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i
:

Rearranging the order of summation gives:

=
X
T

X
W(e;�)

�
?
(�; wm; �wm)

"X
A;W0

�
?(a;w0)(wm; �wm)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i#
:

Using the promise-keeping constraint (64) from Program 4b gives:

=
X
T

X
W(e;�)

�
?(�; wm; �wm) wm = w(e); (114)

where for the last step we used the promise-keeping constraint (60) from Program 4a.

Thus promise keeping is satisfied as well. Substituting definition (111) into both sides of
what we hope will be the obedience constraint (55), we get:

X
W

0

X
W(e;�)

�
?(�; wm; �wm) �

?(a;w0)(wm; �wm)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i

�

X
W

0

X
W(e;�)

�
?(�; wm; �wm) �

?(a;w0)(wm; �wm)

h
u(e+ � � â) + �

X
E

p(e0jâ)w0(e0)

i
:

(115)
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Rearranging the order of summation yields:

X
W(e;�)

�
?
(�; wm; �wm)

"X
W

0

�
?
(a;w

0
)(wm; �wm)

h
u(e+ � � a) + �

X
E

p(e
0
ja)w

0
(e
0
)

i#

�

X
W(e;�)

�
?
(�; wm; �wm)

"X
W

0

�
?
(a;w

0
)(wm; �wm)

h
u(e+ � � â) + �

X
E

p(e
0
jâ)w

0
(e
0
)

i#
:

(116)

This inequality holds because of (65) term by term before summing over W(e; �). Next,
substituting our definitions (111) and (112) into what we hope will be constraint (56), we
want to establish that:

X
W

0

X
W(e;�)

�
?(�; wm; �wm) �

?(a;w0)(wm; �wm)

h
u(ê+ � � â) + �

X
E

p(e0jâ)w0(e0)

i

�

X
W(e;�)

�
?(�; wm; �wm) v

?(ê; e; �; a): (117)

Rearranging gives:

X
W(e;�)

�
?(�; wm; �wm)

"X
W

0

�
?(a;w0)(wm; �wm)

h
u(ê+ � � â) + �

X
E

p(e0jâ)w0(e0)

i#

�

X
W(e;�)

�
?(�; wm; �wm) v

?(ê; e; �; a); (118)

which holds because by (66) it is assumed to hold pointwise in Program 4b. Finally,
starting from the left-hand side of the hoped for (57), we use definition (112) to get:

X
T;A

v(ê; e; �; a) =
X
T;A

X
W(e;�)

�
?(�; wm; �wm) v

?(ê; e; �; a):

Changing the order of summation gives:

=
X
T

X
W(e;�)

�
?(�; wm; �wm)

"X
A

v
?(ê; e; �; a)

#
;
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because of the assumed (67) in Program 4b this is:

�

X
T

X
W(e;�)

�
?
(�; wm; �wm) �wm(ê; e)

� w(ê); (119)

where the last inequality follows from (61). Thus all constraints are satisfied, which com-
pletes the proof. Since the feasible allocations are identical in both Programs, and the
objective function is the same, this also implies that Program 3 and 4 have the same solu-
tion. 2

Proposition 7

� The sequenceWn is shrinking, i.e., for any n,Wn+1 is a subset ofWn.

� For all n,W is a subset ofWn.

� The sequenceWn converges to a limit �W, andW is a subset of �W.

Proof of Proposition 7 To see that Wn is shrinking, we only need to show that W1 is a
subset of W0. Since W0 is an interval, it suffices to show that the upper bound of W1 is
lower than the upper bound of W0, and that the lower bound of W1 is higher than the
lower bound ofW0. The upper bound ofW1 is reached by assigning maximum consump-
tion in the first period and the maximum utility vector inW0 from the second period on.
But the maximum utility vectorW0 by construction corresponds to consuming more than
maximum consumption every period, and since utility is discounted, the highest utility
vector inW1 therefore is smaller than the highest utility vector inW0.

To see that W is a subset of all Wn, notice that by the definition of B, if C is a subset of
D, B(C) is a subset of B(D). SinceW is a subset ofW0 andW = B(W), we have thatW
is a subset ofW1 = B(W0), and correspondingly for all the other elements.

Finally,Wn has to converge to a nonempty limit since it is a decreasing sequence of com-
pact sets, and the nonempty setW is a subset of all elements of the sequence. 2

Proposition 8 The limit set �W is a subset of the true value setW.
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Proof of Proposition 8 To show that an element w of �W is in W, we have to find out-
come probabilities �(�t; atjet; st�1) that satisfy constraints (7), (9), and (11) for w. These
�(�t; atjet; s

t�1) can be constructed period by period from the � that are implicit in the
definition of the operator B. Notice that in each period continuation utilities are drawn
from the same set �W, since �W as the limit of the sequence Wn satisfies �W = B( �W). By
definition of B, the resulting �(�t; atjet; s

t�1) satisfy the period-by-period constraints (15)
to (18). We therefore need to show that satisfying the period-by-period constraints (with
a given set of continuation utilities) is equivalent to satisfying the original constraints (7),
(9), and (11), which we have done above in Section 3.2. 2

62



References

Abreu, Dilip, David Pearce, and Ennio Stacchetti. 1990. “Toward a Theory of Discounted
Repeated Games with Imperfect Monitoring.” Econometrica 58 (5): 1041–1063.

Phelan, Christopher and Robert M. Townsend. 1991. “Computing Multi-Period,
Information-Constrained Optima.” Review of Economic Studies 58:853–881.

63


