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Abstract

In this paper we show that public reserves with a low return and a partial credit-
guarantee scheme can be optimal if banks face a moral hazard problem with both hid-
den actions and hidden information. In our model, banks face uncertain returns on
their loans or investments, and both the level of investment and the actual returns are
unobservable to anyone but the bank itself. We formulate the problem of providing
optimal incentive-compatible credit insurance to the banks, and find that the optimal
contract has the feature that low-return public reserves are used. This occurs even
though public reserves are dominated in return by other investments, and would not
be used in a full-information environment. In order to compute the optimal partial in-
surance scheme, we develop general recursive methods to solve for optimal contracts
in dynamic principal-agent models with hidden income and hidden actions.
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1 Introduction

We consider the problem of providing optimal incentive-compatible insurance in an envi-
ronment where banks face uncertain returns on their loans or investments, and the level
of investment and the actual returns on investment are unobservable to anyone but the
bank itself. The model that we use to analyze the role of public reserves is thus a rep-
resentative of a wider class of models with unobserved states and unobserved actions.
In such environments, optimal allocations cannot be computed with standard methods,
since the number of incentive constraints becomes too large. We develop recursive meth-
ods to solve for optimal incentive-compatible contracts that require only a relatively small
number of constraints.

In dynamic principal-agent models with unobserved income shocks the principal gener-
ally needs some control over the intertemporal rate of substitution of the agent in order
to induce the agent to report his income truthfully. Controlling the intertemporal rate of
substitution becomes difficult, however, if the agent can take unobserved actions that in-
fluence his future consumption possibilities. Indeed, Allen (1985) shows that if the agent
has unobserved access to borrowing and lending in a perfect credit market, the princi-
pal cannot offer any additional insurance. The reason is that any agent will choose the
reporting scheme that yields the highest net discounted transfer regardless of what the
actual endowment is. The planner is no longer able to distinguish agents with low and
high endowments.

For real-world applications, an important question is what the optimal insurance scheme
looks like if the agent can take hidden actions that are different from accessing a per-
fect credit market. Examples of such actions include risky investments, or storage at a
return lower than the credit-market interest rate. In this paper, we present methods to
compute the optimal insurance contract in a wide class of such environments. We apply
our methods to a banking model where bankers face uncertain returns on their invest-
ments, and both the level of investment and the realized return are observed only by the
bankers themselves. We show that in this environment an insurance scheme can arise
in which high-yielding private investments and low-yielding public reserves coexist. In
other words, our model provides a new rationale for bank reserves. Reserves arise as a
feature of the optimal insurance contract in an environment characterized by moral haz-
ard. The traditional justification for public reserves, the need to provide liquidity, does
not play a role in our formulation.
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The setup of our banking model is as follows. A large number of bank owners or in-
vestors are trying to decide on their own investment strategies and whether or not to
adopt some kind of collective credit guarantee scheme. Each bank owner/investor, given
his own unobserved income, has to decide on his current consumption compensation,
how much to take out of the bank, as well as the amount to invest in a variety of risky
loans, assets that have an uncertain payoff in income next period. Other things equal,
each bank owner/investor would like to smooth out next period’s income fluctuations.

There are two ways to do that smoothing. One way is for all bank owner/investors to
remain on their own, to respond to higher income this period by consuming more and
also saving more, that is investing more in risky loans, though the return on those loans
next period remains uncertain. A second way is for bank owner/investors to get together
and collectively insure one another against loan default, that is, levying premia when
portfolios are successful and paying indemnities against the low yields of some of the
projects financed with bank loans. In effect this is like a deposit insurance scheme, an
attempt to stabilize returns on investment against the risk in loan portfolios, but here it
is the bankers’ money that is at risk and the loan return the risk that is insured. The
possibility of such a scheme is limited, however, if the level of investment and realized
investment returns are unobserved. The bank then becomes a ‘black box’, with all the
inner workings hidden to outsiders. More formally, the classic moral hazard problem
arises: A low current-period level of investment makes high returns less likely next pe-
riod, so if loan default were insured completely, and levels of investment were not known,
no banker would invest or be diligent and all would claim indemnities. Recall again that
investment comes at the expense of current consumption levels, and private, unobserved
investment cannot be required.

Yet an alternative partial insurance or loan guarantee scheme is possible. Bank owners
can set up a separate public reserve fund financed with premia but with more limited
possibilities for indemnities. Money placed in this fund is under collective control and can
be put into low-yield but safe assets. The advantage of the fund is that there is presumed
to be no moral hazard problem, so next periods relatively low returns can be used to
compensate bank owners with bad loans. For a variety of parameter values it turns out to
be optimal for bank owners to to pay premia into the public fund. While the bank owners
still invest in loans, they are doing less internal investing than they would if they were
entirely on their own. Surprisingly, the insurance gain from the public reserve fund is so
large that it can under certain parameter values dominate what might seem to be more
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efficient investment. That is, at an optimum, the average yield from more liberal internal
investment among bank owners can dominate the yield-safe asset, but still it is optimal
to set up the public reserve. The reason is that eliciting the information about actual loan
yields under the more liberal policy would be too costly in terms of incentives. Also,
since bank owners invest less in risky loans when the reserve fund is used, the variability
of their income in the next period is reduced, further mitigating the original insurance
problem. In effect, we have created a rational for reserves.

This policy only disappears when the economy’s internal rate of return (i.e., the average
return on investments) is so high that it makes sense for the public authority to issue its
own bond, that is, borrow from outsiders, and lend to the bankers. Even here, however,
some insurance is still possible in the sense that the bank with successful loan portfo-
lios pay back more to the public authority than do those with loan defaults. In effect,
though all bankers might appear collectively to be borrowing at the outside rate, a risk
contingency kicks in for those with loan defaults.

On the other hand, when the economy’s internal rate of return is low (though possibly still
higher than the rate of return on public reserves) in the optimal insurance scheme bankers
do not invest at all in risky assets with unobserved returns. All intertemporal smoothing
is provided through safe investments with observed returns by the fund. Here we observe
the seemingly perverse situation that the utility of the bankers depends negatively on the
return of investment projects. Even though in the optimum the investment projects are
not used at all, their rate of return still influences the optimal allocation. With a high rate
of return, it is more difficult to provide incentives for truthful reporting, and consequently
less insurance is possible.

Our results here are related to a literature on the optimality of public insurance, or iron-
ically, how public insurance can be non-optimal. The idea in Attanasio and Rios-Rull
(2000) is that the provision of public insurance for aggregate shocks can undercut self-
sustaining private insurance against idiosyncratic shocks. Most of the models feature lim-
ited commitment, rather than private information, and people continue to participate in
private schemes only as they weigh the benefit of future participation, insurance against
a bad shock, against the current cost, e.g., of paying a premium now. Of course, such in-
surance is most valuable when one needs it most, particularly when aggregate shocks are
perverse. Thus publicly engineered transfers to those adversely affected, which ceteris
paribus can be a good thing, can undercut some of the benefits of private transfers, and
this latter effect can, depending on parameter values, be large enough as to cause a net
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welfare loss. The result is related to Perri and Krueger (1999) who show that progressive
taxation can have perverse effects, and to Ligon, Thomas, and Worrall (2000) who show
that private storage in an insurance context can have the same perverse effect.

Our model here concentrates on moral hazard and hidden information. We show that
high-yielding private investments can coexist with low-yielding public investments in
the optimum, and that higher returns on private uncontrolled investment that would
be welfare improving in autarky can have a perverse welfare effect to the information
constrained optimum. However, one thing which sets our paper apart from the literature
is that we do not suppose that the public aspect of insurance are imposed exogenously
and suboptimally onto the privately optimizing agents. Rather, we solve a mechanism
design problem which derives the optimal public policy. In effect there is little distinction
between the public and the private sector. We might equally well expect the reserve
fund schemes we described to be adopted by the private sector or to be imposed by an
optimizing government. We only know that some kind of collectivity is required.

Our results appear related to several private and public schemes we have observed in the
past or observe contemporaneously. In typical contemporary deposit insurance schemes
the public puts money in demand deposits and financial institutions and the funds are,
in turn, put via loans into long-term and potentially illiquid projects. There is a risk that
deposits will need to be withdrawn, and that a bank will find itself unable to meet the
demand. To guard against that, financial institutions are required to put some of their
assets into liquid if low-yielding reserves. Banks also pay premia into an insurance fund.
In turn, when faced with excessive withdrawals, the bank can draw on reserves and if
necessary get an indemnity from the fund. Though reserves and deposit insurance funds
are nominally used to guard against liquidity, not insolvency problems, the boundary
in practice is less than clear. In any event, in our setup, we do not make a distinction
between short term low yield assets, on the one hand, and long term high yield assets on
the other. Neither do we make a distinction between liquidity and insolvency. The banks
of our model do on occasion suffer from genuinely low portfolio yields, and subject to
moral hazard and hidden information problems, it is precisely this risk that they wish to
and are able to partially insure.

Other historically observed schemes seem to have similar group insurance aspects. Much
work has been done lately in understanding the Suffolk Bank system. Groups of private
banks in the New England area with circulating notes agreed voluntarily to put some of
their assets into the Suffolk Bank. In turn the Suffolk Bank would redeem individual bank
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notes at par, even when a given bank was under stress or failed. Apparently notes thus
circulated at par over a wide geographic area, whereas prior to the Suffolk Bank system,
notes circulated at an increasing discount the further from the issuing bank.

While our emphasis is on credit guarantees, the methods developed in this paper can be
applied to a more general class of models with hidden endowments and hidden actions.
Other examples include hidden storage with an arbitrary return, including storage of
grain at a loss, or holding money in an inflationary world. In such environments, optimal
allocations cannot be computed with standard methods, since the number of incentive
constraints becomes too large.

On the technical side, the main contribution of this paper is to develop recursive methods
to solve for optimal incentive-compatible contracts that require only a relatively small
number of constraints and can be computed using current computer technology. The
key feature of our formulations is that they allow the planner to specify behavior off the
equilibrium path, which leads to a dramatic reduction in the number of constraints that
need to be imposed when computing the optimal contract. Some of our computational
techniques derive from Prescott (1997). Specifically, Prescott introduced off-path utility
bounds to reduce the dimensionality of private-information problems. While he concen-
trates on a static moral-hazard model, we extend the method to a dynamic framework.

Our paper is also related to Fernandes and Phelan (2000). Fernandes and Phelan develop
recursive methods to deal with dynamic incentive problems with links between the pe-
riods, and as we do, they use a vector of utility promises as the state variable. The main
difference is that Fernandes and Phelan do not consider environments in which both ac-
tions and states are unobservable to the planner, which is the main source of complexity
in our setup. Werning (2001) develops a recursive first-order approach to compute a
dynamic moral hazard problem with storage. Werning’s method applies to a more re-
stricted setting in which output is observed, the return on storage does not exceed the
credit-market return, and storage is not subject to random shocks. We regard his meth-
ods as complementary to ours, since the computational cost of the first-order approach is
lower as long as it is justified. Another feature of our approach is that we start from a gen-
eral setup which allows randomization and unrestricted communication, and show from
first principles that our recursive formulations are equivalent to the original formulation.

A related theoretical paper is Cole and Kocherlakota (2001). Cole and Kocherlakota con-
sider the special case of an economy in which the agent can only save, but not borrow.
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They find that as long as the return on storage is sufficiently high (the gross return has to
be at least as high as the inverse of the discount factor), the optimal allocation is equiv-
alent to access to a perfect credit market. As in Allen’s result, no insurance is possible
beyond self-insurance using borrowing and lending. Cole and Kocherlakota interpret
this outcome as a microfoundation for missing security markets, since the optimal allo-
cation can be decentralized using one-period bonds only. Our methods can be used to
compute optimal outcomes in a similar environment with a lower return on savings, or
in environments with a wedge between borrowing and lending rates. The issue of unob-
served access to credit markets is also discussed in Fudenberg, Holmstrom, and Milgrom
(1990), who derive conditions under which optimal dynamic incentive contracts can be
implemented as a sequence of short-term contracts, one of the conditions being that the
principal and agent can access the credit market on equal terms.

The paper is organized as follows. In Section 2 we introduce the economic environment
that underlies our mechanism design problem. Section 3 develops four different recur-
sive formulations for the planner’s problem. All formulations are linear programs, but
they differ in their computational needs (that is, the number of variables and constraints).
In Sections 4 and 5 we apply our computational methods to the banking environment
described above, and show how public reserves arise as the optimal solution to a mech-
anism design problem. Section 6 discusses a number of additional numerical examples.
Section 7 concludes.

All proofs are contained in the mathematical appendix. Section A.1 introduces a general
formulation of our mechanism design problem with arbitrary message spaces and full
history dependence. Sections A.2 to A.5 derive the recursive representations that were
introduced in Section 3 from this general version, and show that all formulations are
equivalent.

2 A General Principal-Agent Model with Hidden States

and Hidden Actions

In the following sections we develop a number of recursive formulations for a general
mechanism design problem, with the aim to provide a formulation that lends itself easily
to numerical computation. For maximum generality, when deriving the different recur-
sive formulations we concentrate on the case of infinitely many periods with unobserved
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endowments and actions in every period. With little change in notation, the formula-
tions can be adapted to models with finitely many periods and/or partially observable
endowments and actions.

The physical setup is identical for all programs that we consider. At the beginning of each
period the agent receives an endowment e from a finite set E. The endowment cannot be
observed by the planner. Then the planner gives a transfer � from a finite set T to the
agent. At the end of the period, the agent takes an action a from a finite set A. Again, the
action is unobservable for the planner. In most examples below we will concentrate on
positive a and interpret them as storage, but without any changes in the setup we could
also allow for a to be negative, which can be interpreted as borrowing. The interpretation
is the usual small-economy one, with unrestricted access to outside credit markets. The
agent consumes the amount e+ � �a, and enjoys period utility u(e+ � �a). Our methods
do not require any specific assumptions on the utility function u(�), apart from it being
real-valued.

The action a influences the probability distribution over the endowment in the next pe-
riod. Probability p(eja) denotes the probability of endowment e if the agent took action
a in the previous period. For tractability, we assume that all states occur with positive
probability, regardless of the action:

Assumption 1 The probability distribution over the endowment e satisfies p(eja) > 0 for all
e 2 E, all a 2 A.

In the first period the probability p(e) of endowment e does not depend on any prior
actions.

Apart from physical transactions, there is also communication taking place between the
agent and the planner. We do not place any prior restrictions on this communication, in
order not to limit the attainable outcomes. At a minimum, the agent has to be able send
a signal about his endowment, and the planner has to be able to send a recommendation
for the action.

In what follows Q is the discount factor of the planner, and � is the discount factor of
the agent. The planner is risk-neutral and minimizes the expected discounted transfer,
while the agent maximizes discounted utility. Another interpretation is that there is a
continuum of agents with mass equal to unity. In that case, the probability of an event
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represents the fractions in the population experiencing that event. The discount factor
Q is given by Q = 1

1+r
, where r is taken to be the outside credit-market interest rate for

borrowers and lenders. When the discounted surplus is zero, we have attained a Pareto
optimum. We assume that both discount factors are less than one so that utility is finite
and our problem is well defined.

Assumption 2 The discount factors Q and � of the planner and the agent satisfy 0 < Q < 1 and
0 < � < 1.

When there are only finitely many periods, we only require that both discount factors are
bigger than zero, because utility will still be well defined.

3 Recursive Formulations

In this section, we present a series of recursive formulations of the general problem. The
main issue that we have to deal with is that the presence of hidden actions and hidden
states implies a large number of incentive constraints. The most straightforward formu-
lations of the problem are therefore computationally infeasible once grids get large.

From the outset, we work with a recursive formulation that uses a vector of promised
utilities as the beginning-of-period state variable. In the Mathematical Appendix we provide
a formal justification of this setup. The planner promises to deliver utility w(e) in case state
e gets realized. The entire vector of promised utilities is denoted w. The planner has a
beginning-of-period value function V (w; e) that gives the planner’s expected discounted
surplus if the vector of promised utilities is w and state e is realized.

We assume that there are finite grids for all choice variables. #E is the number of grid
points for the endowment, #T is the number of possible transfers, and #A is the number
of actions. The vector of promised utilities is also assumed to be in a finite set W, and
the number of possible choices is #W. We restrict attention to finite grids in order to be
able to solve the model on the computer. Infinite sets can be approximated by making the
number of points in the grid large.

The choice of the set W is not arbitrary, because there are utility vectors that cannot be
implemented by the planner. For example, because both endowment and action are un-
observed, the planner will never be able to assign higher utilities to lower endowments

9



than to higher endowments. On the other hand, we can be sure that at least some utility
vectors are feasible, because the planner can always decide to make the transfer not de-
pend on the endowment, and assign the utilities that result from this policy. In practice,
we determine the set W numerically. We start with a fine grid, and throw out all points
that turn out to be infeasible.

3.1 A Direct Approach

We start with the most straightforward formulation of the problem. The agent comes
into the period with a vector of promised utilities w. At the beginning of the period, the
state e is realized, and the agent makes a report about the state to the planner. Condi-
tional on this report, the planner delivers a contract consisting of lotteries over transfer � ,
recommended storage a, and promised utilities for the next period w0. The planner max-
imizes surplus subject to promise-keeping and incentive-compatibility constraints. The
maximization problem of the planner defines a functional equation in the value function
V (w; e).

Program 1:
The maximization problem of a planner who has promised vectorw and has received report
e is:

V (w; e) = max
��0

X
T;A;W0

�(�; a;w0
jw; e)

h
�� +Q

X
E

p(e0ja)V (w0
; e
0)

i
(1)

subject to the constraints (2) to (5) below. The first constraint is that the �(�) sum to one to
form a probability measure:

X
T;A;W0

�(�; a;w
0
jw; e) = 1: (2)

Second, the contract has to deliver the utility that was promised for state e:

X
T;A;W0

�(�; a;w
0
jw; e)

h
u(e+ � � a) + �

X
E

p(e
0
ja)w

0
(e
0
)

i
= w(e): (3)

10



Third, the agent needs incentives to be obedient. For each transfer � and recommended
action a, the agent has to prefer to take action a over any other action â 6= a:

8�; a; â 6= a :
X
W0

�(�; a;w
0
jw; e)

h
u(e+ � � â) + �

X
E

p(e
0
jâ)w

0
(e
0
)

i

�

X
W0

�(�; a;w0
jw; e)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i
: (4)

Finally, the agent needs incentives to tell the truth, so that no agent with endowment ê
would find this branch attractive. Under the promised utility vectorw, agents at ê should
get w(ê). Thus. an agent who actually has endowment ê but says e nevertheless must not
get more utility than was promised for state ê. This has to be the case regardless whether
the agent follows the recommendations for the action or not. Thus, for all states ê and all
functions Æ : T � A ! A mapping transfer � and recommended action a into an action
Æ(�; a) actually taken, we require:

8ê; Æ :
X

T;A;W0

�(�; a;w0
jw; e)

h
u(ê+ � � Æ(�; a)) + �

X
E

p(e0jÆ(�; a))w0(e0)

i
� w(ê): (5)

Note that similar constraints are written for the ê problem, so that agents with ê receive
w(ê) from a constraint like (3). Of course, there are #E problem 1’s to solve.

The problem with this version is that the number of truth-telling constraints is very large.
For each state ê there is a constraint for each function Æ : T � A ! A, and there are
(#A)(#T�#A) such functions. Unless the grids for � and a are rather sparse, memory prob-
lems make the computation of this program infeasible. The total number of variables in
this formulation, the number of objects under �(�), is #T �#A�#W. There is one prob-
ability constraint (2) and one promise-keeping constraint (3). The number of obedience
constraints (4) is #T �#A � (#A � 1), and the number of truth-telling constraints (5) is
#E � (#A)(#T�#A). As an example, consider a program with two states e, ten transfers
� , two actions a, and ten utility vectors w0. With only ten points, the grids for transfers
and utility promises are rather sparse. Still, for this example and a given vector of utility
promises w and realized state e Program 1 is a linear program with 200 variables and
2,097,174 constraints. If we increase the number of possible actions a to ten, the number
of truth-telling constraints alone exceeds 10100, which is well above current estimates of
the number of atoms in the universe. Clearly, such programs will not be computable now
or any time in the future.
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It is especially harmful that the grid size for the transfer causes computational problems,
as it does here because of the dimensionality of Æ(�; a). One can imagine economic envi-
ronments in which there are only a small number of options for actions available, but it is
much harder to come up with a reason why the planner should be restricted to a small set
of transfers. In the next section we present a method to deal with this specific problem.
Afterwards, we will develop formulations that are also capable of computing solutions in
environments with many actions.

Before we proceed to the next formulation, we need to address what happens in the very
first period. At the beginning of time the agent does not yet have a utility vector assigned.
Instead, we want to trace out the Pareto frontier by varying an initial utility promise W0,
a scalar, to the agent. By varying W0 we can compute the utility of the planner V (W0),
and in this way trace out the entire ex ante Pareto frontier. The maximization problem of
the planner in period zero is:

V (W0) = max
��0

X
E;T;A;W0

�(�; a;w0
jW0; e)p(e)

h
�� +Q

X
E

p(e0ja)V (w0
; e
0)

i
(6)

subject to the constraints (7) to (10) below. The first constraint is that the contracts have
to be probability measures for each e:

8e :
X

T;A;W0

�(�; a;w0
jW0; e) = 1: (7)

Second, the contracts have to deliver promised utility W0:

X
E;T;A;W0

�(�; a;w
0
jW0; e)p(e)

h
u(e+ � � a) + �

X
E

p(e
0
ja)w

0
(e
0
)

i
= W0: (8)

Third, the agent has to be obedient in case he told the truth about e. For each state e,
transfer � , recommended action a, and alternative action â 6= a we require:

8e; �; a; â 6= a :
X
W0

�(�; a;w0
jW0; e)

h
u(e+ � � â) + �

X
E

p(e0jâ)w0(e0)

i

�

X
W0

�(�; a;w0
jW0; e)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i
: (9)

Finally, the agent has to tell the truth and be obedient. For each actual state e, counterfac-
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tual state ê and each function Æ : T � A! A we require:

8e; ê; Æ :
X

T;A;W0

�(�; a;w0
jW0; ê)

h
u(e+ � � Æ(�; a)) + �

X
E

p(e0jÆ(�; a))w0(e0)

i

�

X
T;A;W0

�(�; a;w0
jW0; e)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i
: (10)

This method of handling the first period is especially useful if we restrict attention to a
two-period model. V (w; e) on the right-hand side of (6) is then the value function for
the second period as in the left-hand side of (1), with the future, third period suppressed.
Given the value function for the second period, we only have to compute the above single
program to find the optimal contract in the first period for a given promised utility W0.
One does not have to iterate on a functional equation to find V (w; e) in (1), and hence the
optimal �(�).

Models with a finite number of periods can be solved in the same way with a finite
number of iterations. In an infinite-period setting we do need to find the value func-
tion V (w; e), that is, V (w; e) in (1) is a solution to a functional equation, found in practice
by iteration to convergence. It is therefore more efficient in period zero to use that func-
tion V (w; e) to trace out the Pareto frontier. This can be done by letting the planner offer a
lottery �(wjW0) over utility vectors w before the first period starts and before e is known.
The problem of the planner is:

V (W0) = max
��0

X
W

�(wjW0)

hX
E

p(e)V (e;w)

i
(11)

subject to a probability and a promise-keeping constraint:

X
W

�(wjW0) = 1: (12)

X
W

�(wjW0)

hX
E

p(e) w(e)

i
= W0: (13)

This method is simpler in the infinite-period setting, and it is the one that we use with all
other formulations below.

We will now develop a different formulation of the problem with a much smaller number
of incentive constraints.
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3.2 Double Reporting

The basic idea of this section is to divide the period into two parts and to let the agent
report the endowment a second time after the transfer is received, but before a recom-
mendation for the action is received. On the equilibrium path the agent will make the
correct report twice and follow the recommended action, and the optimal allocation will
be the same as in the first formulation. On the other hand, the second report allows the
planner to specify behavior off the equilibrium path, because outcomes are determined
even if the second report does not coincide with the first. We will see that this possibility
leads to a significant reduction in the number of incentive constraints. A formal proof of the
equivalence of this formulation to the first one is contained in the Appendix.

As before, the agent comes into the period with a vector of promised utilities w. At the
beginning of the period, the agent observes the state e and makes a report to the planner.
Then the planner delivers the transfer � , and afterwards the agent reports the endowment
e again. The incentive-compatibility constraints will ensure that this second report be
correct, even if the first report was false. Because now the planner receives a report after
the transfer, the number of possible transfers does not affect the number of truth-telling
constraints, as it did in (5).

Program 2:
The optimization problem of a planner who promised utility vector w and has already
received first report e is:

V (w; e) = max
��0

X
T;A;W0

�(�; a;w0
jw; e; e)

h
�� +Q

X
E

p(e0ja)V (w0
; e
0)

i
(14)

subject to constraints (15)-(20) below. Notice that the contract �(�; a;w0
jw; e; e) is condi-

tioned on two reports e, unlike in (1). The first constraint, much like (2), is that the �(�)
form a probability measure for any second report ê:

8ê :
X

T;A;W0

�(�; a;w
0
jw; e; ê) = 1: (15)

Since the second report is made after the transfer, we have to enforce that the transfer does
not depend on the second report. For all ê 6= e and all � , we require:

8ê 6= e; � :
X
A;W0

�(�; a;w0
jw; e; e) =

X
A;W0

�(�; a;w0
jw; e; ê): (16)
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Given that the agent told the truth twice, the contract has to deliver the promised utility
w(e) for state e from vector w. That is, much like (3) above:

X
T;A;W0

�(�; a;w
0
jw; e; e)

h
u(e+ � � a) + �

X
E

p(e
0
ja)w

0
(e
0
)

i
= w(e): (17)

Next, the agent needs to be obedient. Given that the second report is true, it has to be
optimal for the agent to follow the recommended action. For each true state ê, transfer � ,
recommended action a, and alternative action â 6= a we require much like (4):

8ê; �; a; â 6= a :
X
W0

�(�; a;w
0
jw; e; ê)

h
u(ê+ � � â) + �

X
E

p(e
0
jâ)w

0
(e
0
)

i

�

X
W0

�(�; a;w
0
jw; e; ê)

h
u(ê+ � � a) + �

X
E

p(e
0
ja)w

0
(e
0
)

i
: (18)

We also have to ensure that the agent prefers to tell the truth at the second report, no
matter what he reported the first time around. Since the transfer is already known at the time
the second report is made, the number of deviations from the recommended actions that we have
to consider does not depend on the number of possible transfers. For each actual ê, transfer � ,
second report ^̂e 6= ê, and action strategy Æ : A! A, we require:

8ê; �; ^̂e 6= ê; Æ :
X
A;W0

�(�; a;w
0
jw; e; ^̂e)

h
u(ê+ � � Æ(a)) + �

X
E

p(e
0
jÆ(a))w

0
(e
0
)

i

�

X
A;W0

�(�; a;w0
jw; e; ê)

h
u(ê+ � � a) + �

X
E

p(e0ja)w0(e0)

i
: (19)

Finally, we also have to ensure that the first report e be correct. That is, an agent who is
truly at state ê and should get w(ê), but made a counterfactual first report e, cannot get
more utility than was promised for state ê. For all ê 6= e we require:

8ê 6= e :
X

T;A;W0

�(�; a;w0
jw; e; ê)

h
u(ê+ � � a) + �

X
E

p(e0ja)w0(e0)

i
� w(ê): (20)

Notice that these latter truth-telling constraints do not involve deviations in the action a.
At the time of the first report the agent knows that the second report will be correct and
that he will take the recommended action, because constraints (18) and (19) hold.

The number of variables in this formulation is #E � #T � #A � #W. Thus, the num-
ber of variables increased relative to the first version, since � now also depends on the
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second report ê. Similarly, there are #E probability constraints (15), (#E � 1) � #T in-
dependence constraints (16), and there is one promise-keeping constraint (17). The total
number of obedience constraints (18) is #E � #T � #A � (#A � 1). The number of
truth-telling constraints for the second report (19) is #E � #T � (#E � 1) � (#A)(#A),
and the number of truth-telling constraints for the first report (20) is #E � 1. Going back
to our example, consider a program with two states e, ten transfers � , two actions a, and
ten utility vectors w0. For this example Program 2 has 400 variables and 134 constraints.
Compared to Program 1, the number of variables increases by 200, but the number of
constraints decreases by more then two million. This makes it possible to solve Program
2 on a standard personal computer. Program 2 does less well if the number of actions is
large. If we increase the number of actions a to ten, Program 2 has 2000 variables and
more than 1011 truth-telling constraints. This is a lot smaller than Program 1, but still too
big to be handled by standard computer hardware. The key advantage of Program 2 rel-
ative to Program 1 is that the number of constraints does not increase exponentially with
the number of possible transfers � . As long as the number of possible actions a is small,
this formulation allows computation with fine grids for the other variables. However, the
number of constraints still increases exponentially with the number of actions. In the next
section we will address methods to deal with this problem.

The equivalence of this formulation to the original Program 1 is not immediate, since the
formulation builds on behavior off the equilibrium path that was left unspecified in Pro-
gram 1. In the appendix, we derive both Program 1 and Program 2 from first principles,
and show that the two formulations are equivalent.

3.3 Assigning Off-Path Utility Bounds

We saw already in the last section that specifying behavior off the equilibrium path can
lead to a reduction in the number of incentive-compatibility constraints. We will now ex-
ploit this idea in a way similar to Prescott (1997) in order to reduce the number of truth-
telling constraints. The choice variables in the new formulation include utility bounds
v(�) that specify the maximum utility an agent can get when lying about the endowment
and receiving a certain recommendation. Specifically, for a given reported endowment
e, v(ê; e; �; a) is an upper bound for the utility of an agent who actually has endowment
ê 6= e, reported endowment e nevertheless, and received transfer � and recommenda-
tion a. This utility bound is already weighted by the probability of receiving transfer �
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and recommendation a. Thus, in order to compute the total expected utility that can be
achieved by reporting e when the true state is ê, we simply have to sum the v(ê; e; �; a)

over all possible transfers � and recommendations a. The truth-telling constraint is then
that this utility of saying e when being at state ê is no larger than the utility promise w(ê)
for ê.

Program 3:
The optimization problem of the planner in this formulation given report e and promised
utility vector w is:

V (w; e) = max
��0;v

X
T;A;W0

�(�; a;w0
jw; e)

h
�� +Q

X
E

p(e0ja)V (w0
; e
0)

i
(21)

subject to the constraints (22)-(26) below. Apart from the addition of the utility bounds
v(�) the objective function (21) is identical to (1). The first constraint is the probability
measure constraint, identical with (2):

X
T;A;W0

�(�; a;w
0
jw; e) = 1: (22)

The second constraint is the promise-keeping constraint, identical with (3):

X
T;A;W0

�(�; a;w0
jw; e)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i
= w(e): (23)

We have to ensure that the agent is obedient and follows the recommendations of the
planner, given that the report is true. For each transfer � , recommended action a, and
alternative action â 6= a, we require as in (4):

8�; a; â 6= a :
X
W0

�(�; a;w
0
jw; e)

h
u(e+ � � â) + �

X
E

p(e
0
jâ)w

0
(e
0
)

i

�

X
W0

�(�; a;w
0
jw; e)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i
: (24)

Next, the utility bounds have to be observed. An agent who reported state e, is in fact
at state ê, received transfer � , and got the recommendation a, cannot receive more utility
that v(ê; e; �; a), where again v(ê; e; �; a) incorporates the probabilities of transfer � and
recommendation a. For each state ê 6= e, transfer � , recommendation a, and all possible
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actions â we require:

8ê 6= e; �; a; â :
X
W0

�(�; a;w0
jw; e)

h
u(ê+ � � â) + �

X
E

p(e0jâ)w0(e0)

i
� v(ê; e; �; a):

(25)
Finally, the truth-telling constraints are that the utility of an agent who is at state ê but
reports e cannot be larger than the utility promise for ê. For each ê 6= e we require:

8ê 6= e :
X
T;A

v(ê; e; �; a) � w(ê): (26)

The number of variables in this problem is#T�#A�#W under �(�) plus (#E�1)�#T�
#A, where the latter terms reflect the utility bounds v(�) that are now choice variables.
There is one probability constraint (22) and one promise-keeping constraint (23). The
number of obedience constraints (24) is #T � #A � (#A � 1). There are (#E � 1) �

#T � (#A)2 constraints (25) to implement the utility bounds, and (#E � 1) truth-telling
constraints (26). Notice that the number of constraints does not increase exponentially in
any of the grid sizes. The number of constraints is approximately quadratic in #A and
approximately linear in all other grid sizes. This makes it possible to compute models
with a large number of actions. In Program 3, our example with two states e, ten transfers
� , two actions a, and ten utility vectors w0 is a linear program with 220 variables and 63
constraints, which is even smaller than Program 2. For the first time, the program is still
computable if we increase the number of actions a to ten. In that case, Program 3 has 1100
variables and 1903 constraints, which is still sufficiently small to be solved on a personal
computer.

As pointed out by Prescott (1997), when implementing formulations like this numerically
one needs to pay attention to the scaling of utility. Linear programming routines usually
search only over nonnegative values for the choice variables. Therefore utility needs to
be rescaled so that the utility bounds are positive. Given the finite grids for endowment
and transfer, it is always possible to rescale utility this way.

3.4 Subdividing the Problem

In the last formulation, the number of constraints gets large if both the grids for trans-
fer � and action a are made very fine. In practice, this leads to memory problems when
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computing. In this section we develop a formulation in which the transfer and the recom-
mendation are assigned at two different stages. At each stage, the number of variables and
constraints is relatively small. This enables us to compute problems with fine grids for
actions and transfers.

As in Section 3.2 on double reporting, the period is divided into two parts. In the first
subperiod the agent reports the endowment, and the planner assigns the transfer, an in-
terim utility when the agent is telling the truth, as well as a vector of utility bounds in
case the agent was lying. In the second subperiod the planner assigns an action and a
vector of promised utilities for the next period.

The solution to the problem in the second subperiod is computed for each combination
of endowment e, transfer � , interim utility wm(e) (m for “middle” or interim) along the
truth-telling path, and vector of utility bounds for lying, �wm(ê; e). Here �wm(ê; e) is an
upper bound on the utility an agent can get who has endowment ê, but reported e nevertheless.
In order to make the exposition more transparent, we write wm(e) and the vector �wm(ê; e)

as a function of e to indicate the state for which the interim utility is assigned. �wm(ê; e)

is the vector of �wm(ê; e) with components running over endowments ê 6= e. The choice
variables in the second subperiod are lotteries over the action a and the vector of promised
utilities w0 for the next period.

We use Vm[e; �; wm(e); �wm(ê; e)] to denote the utility of the planner if the true state is e, the
transfer is � , and wm(e) and �wm(ê; e) are the assigned interim utility and utility bounds
for lying. The function Vm(�) is determined in the second subperiod (Program 4b below),
but as is typical of dynamic programs, we now take that function Vm(�) as given.

We will analyze the first subperiod. In the first subperiod the planner assigns transfers,
interim utilities, and utility bounds. When choosing the utility assignments, the planner
is restricted to assignments that can actually be implemented in the second subperiod.
We use W(e; �) to denote the set of feasible utility assignments for a given state e and
transfer � . For now we will take this set as given, and define it precisely below when we
turn to the second subperiod.

The agent comes into the first subperiod with a vector of promised utilities w, to be ef-
fected depending on the realized state e. The planner assigns a transfer � , on-path interim
utilities wm(e), and off-path utility bounds �wm(ê; e) subject to promise-keeping and truth-
telling constraints.

Program 4a:
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The maximization problem of the planner given reported endowment e and promised
utility vector w is:

V (w; e) = max
��0

X
T

X
W(e;�)

�(�; wm(e); �wm(ê; e)jw; e) Vm[e; �; wm(e); �wm(ê; e)] (27)

subject to the constraints (28)-(30) below. The first constraint is the probability constraint:

X
T

X
W(e;�)

�(�; wm(e); �wm(ê; e)jw; e) = 1: (28)

Promises have to be kept:

X
T

X
W(e;�)

�(�; wm(e); �wm(ê; e)jw; e) wm(e) = w(e): (29)

Finally, truth telling has to be observed, so that this e branch is not made too tempting.
An agent who is at state ê should not be able to gain by claiming to be at state e. For all
ê 6= e, we require:

8ê 6= e :
X
T

X
W(e;�)

�(�; wm(e); �wm(ê; e)jw; e) �wm(ê; e) � w(ê): (30)

The number of variables in this program is
P

T
#W(e; �), and there are 1 + (#E) con-

straints: one probability constraint (28), one promise-keeping constraint (29), and (#E-1)
truth-telling constraints (30).

We now turn to the second subperiod. As before in Section 3.3, apart from the lotter-
ies over actions and utilities, the program in the second subperiod also assigns utility
bounds. v(ê; e; �; a) is an upper bound on the utility an agent can get who has true en-
dowment ê, reported endowment e, and receives transfer � and recommendation a. These
utility bounds are weighted by the probability of receiving recommendation a.

Program 4b:
The following program, given endowment e, transfer � , and interim utilities and utility
bounds, determines Vm[�]:

Vm[e; �; wm(e); �wm(ê; e)] = max
��0;v

X
A;W0

�(a;w
0
) [�� +Q

X
E

p(e
0
ja)V (w

0
; e
0
)] (31)
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subject to constraints (32)-(36) below. The first constraint is the usual probability con-
straint: X

A;W0

�(a;w0) = 1: (32)

The promise-keeping constraint requires that the interim utility wm(e) that was promised
is actually delivered:

X
A;W0

�(a;w0)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i
= wm(e): (33)

The obedience constraints ensure that given that the reported endowment is correct, the
agent carries out the recommended action. For all recommended a and alternative actions
â 6= a, we require:

8a; â 6= a :
X
W0

�(a;w0)

h
u(e+ � � â) + �

X
E

p(e0jâ)w0(e0)

i

�

X
W0

�(a;w0)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i
: (34)

The next set of constraints implements, or respects, the utility bounds. The utility of
having reported e, being at state ê, having received transfer � and recommendation a

cannot be larger than v(ê; e; �; a). For all ê 6= e, all recommendations a, and all actions â
we require:

8ê 6= e; a; â :
X
W0

�(a;w0)

h
u(ê+ � � â) + �

X
E

p(e0jâ)w0(e0)

i
� v(ê; e; �; a); (35)

where as usual e and � are givens for Program 4b. Finally, the utility bounds for misre-
porting the endowment have to be observed. For each endowment ê 6= e we require:

8ê 6= e :
X
A

v(ê; e; �; a) � �wm(ê; e): (36)

The number of variables in this program is#A�#W under �(�) plus (#E�1)�#A under
v(�), where again e and � are fixed at this stage of the problem. There is one probability
constraint (32) and one promise-keeping constraint (33), and there are #A�(#A�1) obe-
dience constraints (34). The number of constraints (35) to implement the utility bounds
is (#E � 1)� (#A)2, and the number of truth-telling constraints (36) is (#E � 1). Notice
that the number of constraints and variables does not depend on the grid for the transfer.
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More possible transfers will increase the number of programs to be computed at this second
stage (Program 4b), but the programs will not change in size. In our example with two en-
dowments e, ten transfers � , ten actions a, and ten utility vectors w0, Program 4b has 110
variables and 193 constraints, while Program 4a has 3 constraints. The number of vari-
ables in Program 4a and the number of Programs 4b that need to be computed depends
on the grid for interim utilities. For example, if the grid for interim utilities for each �

and e has ten values, Program 4a has 100 variables, and 1000 Programs 4b need to be
computed. In practice, it is generally faster to use Program 3 as long as it is feasible to do
so. Large programs can only be computed using Program 4a and 4b, since the individual
programs are smaller and require less memory than Program 3.

We still have to define the set W(e; �) of feasible interim utility assignments in Program
4a. It is the set of all assignments for which Program 4b has a solution. With Wm being
the utility grid that is used for wm(e) and �wm(ê; e), define:

W(e; �) =
�
(wm(e); �wm(ê; e)) 2 (Wm)

(#E)
j Vm[e; �; wm(e); �wm(ê; e)] is defined

	
(37)

In other words, we vary utility assignments as parameters or states in Program 4b and
rule out the ones for which there is no feasible solution.

4 Risky Banking and the Optimality of Public Reserves

In this section, we will apply the methods developed above to compute optimal incentive-
compatible contracts in a two-period banking model. For simplicity, suppose that banks
(the agents) enter the first period with an observed initial endowment or net worth (a
special version of the general setup). The initial endowment can be withdrawn from the
bank as profit and consumed by the owner, or it can be invested in varying quantities of
loans. Investment is unobserved. The return on that investment, or the endowment in
the second period, is random, and can be observed only by the bank itself. Depending on
the level of investment in the first period, a high endowment in the second period is more
or less likely. Still, the return on loans is uncertain. It is possible that the projects fail and
that even a bank that invested at the highest possible level receives the lowest possible
endowment in the second period.

Bankers are assumed to be risk-averse, so that other things being equal, they would like
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to smooth out income fluctuations and insure against the uncertain returns of their in-
vestments. If the bankers are on their own, their only mechanism for smoothing income
between the two periods is to invest in risky loans. They have no possibility of insuring
against the uncertain returns on their investments. But in addition to the banks, there is
also a planner who has access to a risk-free storage technology with zero net yield. We
solve the problem of providing optimal incentive-compatible insurance to the banks, sub-
ject to the requirement that the planner receives a zero discounted surplus. The planner
could be identified with the central bank. An alternative assumption would be that there
is a continuum of banks who face idiosyncratic, but not aggregate, risk. In that case, the
outcome of the planning problem can be interpreted as a mutual insurance scheme run
by the banks themselves. The results do not depend on specific institutional assumptions,
that is, the optimal contract can be implemented in different ways.

Figures 1 to 4 show features of the optimal contract for a number of variations of our
model. In all cases, the known endowment in the first period is .89, a simplification of the
general setup. In the second period the endowment can be low or high, .4 or .8. Three
investment levels (in addition to zero investment) are possible, .1, .2, and .3, and the expected
incremental returns per unit invested are 1.31, 1.01, and .90, respectively. In other words,
investing .1 increases the expected endowment in the second period by .131, or 1.31 per
unit (.131/.1), investing .2 increases the expected endowment by an additional .101 or
1.01 per unit, and so on. The grids for each transfer have 60 elements, and the grid for the
promised utility vector which is assigned in period one has 3600 elements.1 Storage by
the planner has zero net return (i.e., the discount factor of the planner equals one, Q = 1).
The discount factor � of the bankers equals one as well. This assumption is made for
simplicity, the results do not change if the discount factor of the bankers is less than one.
Notice that the return on private investments exceeds the return on public storage up to
an investment level of .2, but is lower after that. If the aim were to maximize the expected
endowment in the second period as in a neoclassical world, we therefore would expect
the bank to invest .2.

The graphs show outcomes for two different assumptions on the matrix P , which deter-
mines the probability of each endowment in period two (down the column) as a function
of investment in period 1 (across the row). For Figures 1 and 2, with zero investment the

1However, the program dismisses utility vectors which turn out to infeasible, so the dimension of the
linear programs which are actually computed is smaller than the one implied by the grid sizes.
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probability of the low endowment is :975:

P =

 
:9750 :6475 :3950 :1700

:0250 :3525 :6050 :8300

!
:

In other words, with low investment income from investment is likely to be low, but by
the same token the variance or riskiness of output in the second period is low as well.
If investment is increased, the higher income is more likely, but the variance of output
increases as well. The assumption of an increasing variance of output with increasing
level of investment is a natural one, but we will later also consider the opposite case to
illustrate the relationship of risk to public reserves.

Figure 1 shows the policy functions under full information and full commitment for the
case that investment increases the variance of output. Suppose all actions and endow-
ments are observed by the planner. The policy functions are shown as a function of the
initial utility promise W0 to the agent, and the vertical line in all graphs marks the initial
utility promise at which the expected surplus of the planner is exactly zero. Since full
insurance is possible, investment is at the first-best level of .2 throughout (see the graph
in the upper right-hand corner). The observed idiosyncratic shocks across bank-specific
investments can be completely smoothed away, leaving the highest social return. The en-
dowments were chosen such that the transfer in the first period (upper-left corner) is ex-
actly zero if the expected surplus of the planner is zero. In other words, there are no public
reserves created at the initial date (recall that Q = 1). In the second period, the planner
implements insurance and transfers resources from high-output bankers with successful
projects to low-output bankers with failed projects (lower-left corner). In summary, under
full information, public storage is not used, and investment is at the efficient level. The
planner merely insures completely against income fluctuations in the second period by
transferring resources between banks with successful loans and those with failed loans.

Figure 2 shows the policy functions for the same economy under the assumption of pri-
vate information. Now both the level of investment in the first period and the return on
investment in the second period are unobserved by the planner, and the planner has to
provide incentives for obedience (investing properly) and truthful reporting. Investment
by the agent (upper-right corner) falls to .1 throughout. Note that private investment is
still positive and has a high marginal rate of return above the outside interest rate. At zero
expected surplus, the planner taxes or takes in premia in the first period, and establishes
a social fund invested at the outside interest rate. In the second period, he returns re-
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Figure 1: Policy Functions, Unconstrained Solution. Investment Increases Variance of
Output in Period 2.
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put in Period 2.
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sources from indemnities and liquidation of the social fund. The planner now uses public
storage to smooth the income of the banks. Transfers in the second period vary only little
as a function of the realized endowment. Since the endowment is unobserved and incen-
tives for truthful reporting have to be provided, only little additional insurance against
income fluctuations in the second period is possible (due to lotteries and differences in
risk aversion).

In summary, under moral hazard we observe inefficient use of private investment in the
sense that if there were full information the level of investment would be higher. We
also observe the coexistence of high-yielding private investment with low-yielding public
reserves. What is the intuition for these results? The key assumption that generates this
outcome is that increasing investment increases the variance of output, and under private
information, fluctuations in output are not well insured. The choice between public and
private investment exhibits the usual risk-return tradeoff. While this assumption seems
reasonable, we also computed the model under the opposite assumption to demonstrate
how the optimal contract varies with the relationship between investment and risk.

In Figures 3 and 4, at zero investment, the probability of getting the low endowment is
reduced from .975 to .83. As investment increases to .3, the probability of getting the low
endowment falls to 0.025:

P =

 
:8300 :5025 :2500 :0250

:1700 :4975 :7500 :9750

!
:

This implies that going from zero investment to full investment actually decreases the
variance of output in the second period. Apart from this difference, the expected return
on investments and other aspects of the environments underlying Figures 1 and 2 and
Figures 3 and 4 are identical.

Figure 3 shows the policy functions under full information for the case that investment
decreases the variance of output. As in Figure 1, investment is at the first-best level of .2
throughout. In fact, the only difference to Figure 1 is that the vertical line indicating zero
surplus for the planner has moved slightly to the right, since the expected endowment in
the second period is higher. In other words, at zero surplus the agent receives a higher
initial expected utility W0.

Figure 4 shows the policy functions for the same economy (investment decreases the vari-
ance of output) with private information. Investment by the agent (upper-right corner)
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now rises to .3 (notice that the marginal return is lower than the outside market rate)
instead of falling to .1 as it did in Figure 2. Evidently, the inability to control private in-
vestment has done some damage. At zero expected surplus, the planner or community
fund provides positive transfers to everyone in the first period by borrowing from the
outside market, and requires repayment in the second period. No public reserves are
held in the low-interest asset at any time. This is exactly the opposite of Figure 2.

In summary, we find that public reserves with a low return can be optimal if banks face
a moral-hazard problem. The key underlying assumption is that increased lending or
investment increases risk, as seems natural. Using public reserves lowers overall risk and
is therefore optimal in the information-constrained solution, even though public storage
would be inefficient in the first-best solution. This conclusion would seem to rely on the
absence of insurance, that is, bankers who do the private investing bear virtually all the
risk arising from random returns. Below, we show that public storage is still optimal
in environments where the planner can provide partial incentive-compatible insurance
against income shocks.

5 Risky Banking in a Three-Period Setting

In the two-period banking examples in the preceding section there was little scope for in-
surance against the income shock in the second period (beyond the provision of risk-free
investment through the planner), since the world ends after that period. Consequently,
the transfer in the second period is (almost) the same across both income realizations, and
all risk is born by the bankers. In this section, we show that the basic result of coexisting
risky private and low-return public investment holds up in environments with additional
periods, where more insurance is possible.

Figures 5 and 6 show an extension of the environment described above to three periods.2

The initial endowment is known, but in periods 2 and 3 the income of the bankers is un-
known and depends on previous investment. Again, this is a modification of the general
setup which facilitates computations. As before, the planner can borrow or lend at zero

2Even with the methods described in this paper, computing this model is not a trivial task. The main
difficulty in the banking example is that public and private investment are close substitutes, so that in-
accuracies which arise from using grids for transfers and utility promises can lead to jumps in the policy
functions for private and public investment. When the two forms of investment are close substitutes, fine
grids for transfers and utility promises need to be chosen, and computation time is high.
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net yield. The known endowment in the first period is 1:135. In the second period, the
possible income levels are 0:9 and 1:5, and in the third period income can be 0:7 or 1:3.
The incomes are chosen such that with investment at the efficient level expected income
is constant across the periods. As in the two-period environment, four levels of private
investment (0, .1, .2, and .3) are possible. As before, the expected incremental marginal
returns for investing at level .1, .2, and .3 are given by 1.31, 1.01, and .9. The probabilities
over the two income levels depending on investment are given by the matrix P :

P =

 
:9950 :7767 :6083 :4583

:0050 :2233 :3917 :5417

!
:

The first column corresponds to zero investment, the second column to an investment of
.1, and so on. With zero investment, the probability of getting the low income level is
.995, and the probability for the high income is .005. The income variance increases with
investment in this example. The grids for the transfers in period one and two have 30
elements, and there are 70 grid points for the transfer in the third period. The grid for the
promised utility vector which is assigned in period one has 3600 elements, and the grid
for the utility assignment in the second period has 3600 elements.

Figure 5 shows the outcome under full information (income and investment level is ob-
served in each period). The outcome is computed using the same grids on transfers and
utility promises that were used for the constrained solution below. Private investment is
at the efficient level of .2 both in period 1 and period 2 (see graphs in the middle column).
Through income-contingent transfers, the planner provides full insurance, i.e., in periods
2 and 3 the difference between the transfer for low- and high-income bankers equals their
difference in income in that period. At zero expected surplus for the planner, the average
transfer turns out to be zero in every period.

Figure 6 shows the results under private information (income and investment are unob-
served). The policies are shown as a function of the realized income. The transfers in the
second and third period and the promised utilities for the second period turn out to be
contingent on income in the second period, and the utility promises for the third period
are contingent on income in periods 2 and 3 (‘LH’ means low income in 2 and high in-
come in 3, and so on). The optimal policies for private and public investment mirror the
results in the two-period environment. Private investment is only at .1 throughout. At
zero expected surplus, the transfer is negative in the first period, which implies that the
community is creating a safe investment fund. In the second period, the average trans-
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fer is close to zero, meaning that the fund is maintained. In the third period the average
transfer is positive, so the community is returning the safe investment to the bankers.

In the three-period environment, the planner can provide a substantial amount of insur-
ance against the income shock in the second period. The difference between the transfer
for bankers with high and low income (solid and dotted line) is about .3, or half of the
income difference. Of course, perfect insurance is not possible. The planner can provide
this insurance by trading of transfers in the second period against utility promises for the
third period (bankers with low income in the second period receive a higher transfer, but
a lower utility promise for the third period). Notice that the transfer in the third period
is lower for agents who received low income in the second period. This form of insurance
was not possible in the two-period economy. But even though a substantial amount of
insurance is provided, it is still optimal to replace high-yield private investment with
low-yield, low-risk public reserves.

The income shock in the third period cannot be insured, since the absence of another
period makes it impossible for the planner to trade off transfers against future promised
utilities. Notice that unlike in the full-information environment, the transfer in the third
period is not contingent on income in that same period.

6 Other Numerical Examples

In the banking model, we concentrated on the situation of private investment with a
high return and public storage with a low return. Also, the return on private investment
varied with the level of investment. In this section, we analyze some additional numerical
examples concentrating on information-constrained insurance. In these examples, the
return to private investment is constant, independent of the level of investment, but again
different from the public return. We consider both cases in which the return on private
investment exceeds the return on public storage, and cases in which the private return is
lower than the public return. Here we observe the seemingly perverse effect that lowering
the return on private investment can actually increase the utility of the agent. The reason
is that once the return is so low that private investment is not used in the constrained
optimum, lowering the return even further makes it easier for the planner to provide
incentives for truth-telling and obedience, which results in more insurance. In each case
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Figure 7: Policy Functions, R=1

we used Program 3 for our computations. The investment technology of the agent will be
interpreted as storage.

In all example environments the agent has logarithmic utility. There are two possible
endowments e (2.1 or 3.1), three storage levels a (from 0 to 0.8), and thirty transfers �
(from -1.2 to 1) in every period. Planner and agent have the same discount factor � =

Q = :952. The discount factor of the planner corresponds to a risk-free interest rate of 5%.
The utility grids have fifty elements. In the initial period, each endowment occurs with
probability .5. In all other periods, the probability distribution over endowments depends
on the investment level in the previous period. If the investment level is zero, the high
endowment occurs with probability .5. The probability of the high endowment increases
linearly with the investment level. The expected return on storage R determines how fast
the probability of the high endowment increases. For example, for R = 1 an increase in
storage of 0.1 results in an increase in the expected endowment of 0.1. Since the difference
between the two endowment equals one (3:1�2:1), withR = 1 increasing the storage level
a by 0.1 results in an increase in the probability of the high endowment of 3.1 by 0.1, and
an equal decrease in the probability of the low endowment of 2.1.
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Figure 7 shows the policy functions forR = 1 in an infinite-period setting as a function of the
initial utility promise W0. We computed the policy functions by iterating on the Bellman
operator until convergence, and then solving the initial planning problem (11). It turns
out that the choices of the planner are similar for all values of R that are lower than the
risk-free interest rate. Therefore we use Figure 7 at R = 1 to represent general features
of the optimal incentive-compatible contract for R < 1:05. The choices of the planner are
shown as a function of the initial utility promise to the agent. In all graphs a vertical line
marks the initial utility level at which the expected discounted surplus of the planner is
zero. As before, if there is a continuum of agents, the planner can be interpreted as a
mere programming device to determine the optimal allocation for the community, and
the zero-surplus utility level corresponds to the constrained Pareto-optimal allocation for
a continuum of agents.

As long as R < 1:05 (the market rate), the planner never recommends a positive invest-
ment or storage level ever; only the outside credit market is used. The planner uses
transfers and utility promises to provide incentive-compatible insurance every period.
The transfer for the low endowment is higher than for the high endowment, and at zero
expected surplus high-income agents today pay premia, while low-income agents receive
indemnities. The difference in consumption between low- and high-endowment agents
is only about .2, even though the endowment differs by 1. In order to insure incentive
compatibility (i.e., induce the high-endowment agent to report truthfully), the planner
promises higher future utility to agents with the high endowment. Both consumption
and utility promises increase with initial promised utility.

We can use the optimal policy functions to compute the long-run distribution of con-
sumption and utility in an economy with a continuum of agents. Atkeson and Lucas,
Jr. (1992) found that in a class of dynamic incentive problems the efficient allocation has
the property that the distribution of consumption diverges over time, i.e., a diminishing
fraction of the population receiving an increasing fraction of resources. Phelan (1998) ex-
amines the long-run implications of incentive problems more generally. He finds that the
limiting distribution for consumption and utility crucially depends on features of the util-
ity function, namely whether or not marginal utility is bounded away from zero as con-
sumption approaches infinity. In our setup, the set of possible consumption and utility
values is bounded, since finite grids are used. Figures 8 and 9 show that the long-run dis-
tribution of consumption and utility is twin-peaked. Consumption disperses over time,
and after a series of good or bad shocks either corner for consumption can be reached.

35



1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Distribution of Consumption

Consumption

Figure 8: The Long-Run Distribution of Consumption

The corners are not absorbing states, however. For example, agents who consume mini-
mum consumption are thrown back into the distribution once a positive shock hits. Our
interpretation for the twin-peaks distribution is that the lower peak is accounted for by
agents who were deflected away from the lower bound for consumption.

An interesting question is how high the return on storage needs to be before the planner
starts to recommend the use of storage. It turns out that if the planner is nearly indifferent
between recommending storage or not, numerical inaccuracies due to finite grids can
have large impact on the result. For that reason we made additional computations in a
two-period setting, which allowed us to use very fine grids. Figure 10 shows the policy
functions in the two-period model when the return on storage equals the credit-market
return, and Figure 11 shows the policy functions for R = 1:07, i.e., the return on storage
slightly exceeds the credit market return. We see that even if the return on storage is
slightly higher than the credit-market return, the planner still recommends zero storage.
Obviously, under full information the planner would recommend the maximum storage
level whenever the return on storage exceeds the credit-market return. The reason that
this does not occur in our computations are the incentive constraints. Here, keeping the
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agents at the zero corner for storage makes it easier to provide incentives for truth-telling
and obedience.

Figure 12 shows the policy functions for R = 1:10. Since the risk-free interest rate is 5%,
storage is much more productive than lending in the credit market, the net return is twice
as high. The effect of the high return starts to dominate, and consequently the planner
recommends the maximum storage level of 0.8 to both agents. Notice that the expected
transfer to both agents is positive over the entire range of initial utility promise. In effect,
the planner is lending money to the agents, who invest it into the productive storage tech-
nology. Other than the different use of storage, the planner provides insurance against
income shocks in a similar way to the case with a lower R. Agents with a low endowment
get a higher transfer, but lower utility promises.

Figure 13 shows how the expected utility of the agent varies with the return on storage,
subject to the requirement that the discounted surplus of the planner is zero. The utility of
the agent is shown for values of R between 0 and 1.1. The top line is the utility the agent
gets under full information, that is, when both endowment and storage are observable
by the planner. In this case the planner provides full insurance, consumption and utility
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Figure 10: Policy Functions, Two-Period Model, R=1.05

promises are independent of the endowment. It turns out that the utility of the agent
does not vary with the return on storage as long as R � 1:05. This is not surprising,
since 1.05 is the risk-free interest rate. As long as the return on storage does not exceed
the credit-market return, raising the return on storage does not extend the unconstrained
Pareto frontier. Storage is never used, and the utility of the agent does not depend on the
return on storage. When R exceeds 1.05, the Pareto frontier expands and the utility of
the agent increases. The lower line shows the utility of the agent under autarky. When
the return on storage is sufficiently high, the agent uses storage to self-insure against the
income shocks. Since under autarky storage is the only insurance for the agent, utility
increases with the return on storage. The middle line shows the utility of the agent with
hidden endowments and hidden action. Once the return on storage is sufficiently high,
the utility of the agent decreases with the return on storage, instead of increasing as it does
under autarky. As long as the planner never recommends positive storage levels, a higher
return on storage has no positive effects. On the contrary, with a high return on storage
it becomes harder to satisfy the obedience constraints which require that the agent does
not prefer a positive storage level when the planner recommends zero storage. Therefore
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Figure 11: Policy Functions, Two-Period Model, R=1.07

raising the return on storage shrinks the set of feasible allocations, and the utility of the
agent falls. Once R exceeds the credit-market return by a sufficient margin, however,
private storage is used in the constrained solution, and consequently further increases in
R raise utility.

For R = 1:05, when public and private returns are equal, the constrained-optimal allo-
cation and autarky yield similar, but not identical, utility. Recall that private agents in
the model do not have perfect access to credit markets in the sense that there is an upper
bound on borrowing. But we can also see that once the return on investment is somewhat
lower than the credit-market interest rate, the gains from optimal incentive-compatible
insurance become sizable. Already at R = 1 the utility gain from going from autarky to
incentive-compatible insurance is as large as the utility advantage of the full-information
solution relative to the incentive-compatible solution. At R = 1, the difference in utility
between autarky and the constrained optimum is equivalent to a gain of 1.4% of con-
sumption in the first period. At R = 0:95, the gain is already 1:93%, and at R = 0:7

the gain is 2:3%. Thus for all but the highest values for return on storage the gains from
optimal insurance are sizable.
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Figure 12: Policy Functions, Two-Period Model, R=1.10

The optimal allocations in this application are computed subject to two types of incen-
tive constraints: obedience constraints force the agent to take the right action, and truth-
telling constraints ensure that the agent reports the actual endowment. What happens if
only one type of constraint is introduced? If we remove the truth-telling constraints (i.e.,
we assume that the actual endowment can be observed by the planner) and assume that
the return on storage does not exceed the credit-market return, the situation is simple:
The planner can provide full insurance against income shocks. In this case the obedience
constraints are not binding, since the optimal storage level is zero, which is also what the
agent prefers of income shocks are fully insured. Conversely, if only the obedience con-
straints are removed, as if storage could be observed, full insurance cannot be achieved.
Since the planner will recommend zero storage, the outcome is the same as in the sit-
uation where the storage technology has zero gross return, as in Figure 13 for R = 0.
Without the obedience constraints, more insurance is possible, but it still falls well short
of full insurance.
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7 Conclusions

In this paper we show how a dynamic mechanism design problem with hidden states
and hidden actions can be formulated in a way that is suitable for computation. The
main theme of the methods developed in the paper is to allow the planner to specify
behavior off the equilibrium path. In Program 2 this happens because the agent reports
his endowment more than once, so that the planner has to specify what happens if there
are conflicting reports. In Programs 3 and 4 the planner chooses bounds that limit the
utility the agent can get on certain branches off the equilibrium path. By applying these
methods, we can solve problems on a standard PC that otherwise would be impossible to
compute on any computer.

We use our methods to solve for the optimal credit insurance scheme in a model in which
banks face uncertain returns on their investments and are subject to moral hazard. We
find that in the constrained optimum low-yielding public reserves and high-yielding pri-
vate investments can coexist, even though public reserves would not be used in the first-
best solution. To this end, our model provides a rationale for bank reserves that relies on
moral hazard only, without reference to traditional justifications for reserves like the need
for liquidity.

In another application, we examine how the optimal insurance contract varies with the
return of the private investment technology. Specifically, we observe that in certain cases
the utility of the agent can actually decrease as the return of the private investment tech-
nology rises. This occurs when the return on public storage is sufficiently high so that
in the constrained optimum only public storage is used. If now the return to the private
technology rises, it becomes more difficult for the planner to provide incentives for truth-
telling and obedience, and consequently less insurance is possible. Thus the effect of a
rising return of private investment on the agent’s utility in the constrained optimum is
exactly the opposite of the effect that prevails under autarky, where a higher return raises
utility.
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A Mathematical Appendix

In this Appendix we derive all Programs discussed in the paper from first principles.
We start with a general setup with arbitrary message spaces, no truth-telling constraints,
and strategies that are allowed to be fully history dependent. We then show that the
general setup can be reduced to Program 1. The first step is to reprove the revelation
principle. We thus limit ourselves to a single message space which is equal to the space
of endowments, and show that the agent can be required to tell the truth. Likewise, the
message space for the planner is the space of actions, and the agent can be required to
follow the recommended action. In a second step we introduce continuation utilities as a
state variable to limit history dependence and arrive at the recursive version of Program 1.
Once Program 1 is derived, we follow the same procedure to show that Program 2 is also
equivalent to the general setup (and therefore to Program 1). The remaining theorems
show the equivalence of Program 3 and Program 4 to Program 1 and Program 2. We
conclude that all Programs are equivalent, and none of them is more restrictive then the
general communication game that we take as our starting point.

A.1 The General Setup

We start with a general communication game with arbitrary message spaces and full
history-dependence.

As before, at the beginning of each period the agent realizes an endowment e. Then
the agent sends a message m1, to the planner, where m1 is in a finite set M1. Given the
message, the planner assigns a transfer � 2 T , possibly at random. Then the agent sends a
second message m2, where m2 is in some finite set M2. Now the planner sends a message
r 2 R to the agent, and R is finite as well. Finally the agent takes an action a 2 A.

We will use ht to denote all these choices and the realized endowment in period t :

ht � fet; m1t; m2t; �t; rt; atg:

We denote the space of all possible ht by Ht. Ht is given by:

Ht � f(et; m1t; m2t; �t; rt; at)jet 2 E;m1t 2 M1; m2t 2M2; �t 2 T; rt 2 R; at 2 Ag:
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The history of the game up to time t will be denoted by ht:

h
t
� fh�1; h0; h1; : : : ; htg:

The set of all possible histories up to time t is denoted by H
t and is given by:

H
t
� H�1 �H0 �H1 � : : :�Ht:

At any time t, the agent knows the entire history of the game up to time t � 1. On the
other hand, the planner sees neither the true endowment nor the true action. We will use
gt and g

t to denote the history of the planner. We therefore have:

gt � fm1t; m2t; �t; rtg:

The planner’s history of the game up to time t will be denoted by gt:

g
t
� fg�1; g0; g1; : : : ; gtg:

The set Gt of all histories up to time t is defined analogously to the set H t above. Since
the planner sees a subset of what the agent sees, the history of the planner is uniquely
determined by the history of the agent. We will therefore write the history of the planner
as a function g

t(ht) of the history h
t of the agent. There is no information present at the

beginning of time, and consequently we define h�1 � g�1 � ;.

The choices by the planner are described by a pair of outcome functions �(�tjm1t; g
t�1)

and �(rtjm1t; m2t; �t; g
t�1) which map the history up to the last period and events that

occurred already in the current period into a probability distribution over transfer �t and
a report rt. To save on notation, we will write the choice object of the planner as a joint
probability distribution �(�t; rtjm1t; m2t; g

t�1) that depends only on the history and the
reports by the agent. Since the transfer is assigned before the second report, we have to
enforce that the transfer does not depend on the second report. Therefore the planner can
only choose outcome functions that satisfy the condition:

X
R

�(�t; rtjm1t; m2t; g
t�1) =

X
R

�(�t; rtjm1t; �m2t; g
t�1) (38)

for all �t; gt�1; m1t; m2t; and �m2t.
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The choices of the agent are described by a strategy. A strategy consists of a function
�(m1tjet; h

t�1) which maps the history up to the last period and the endowment into a
probability distribution over the first report m1t, a function �(m2tjet; m1t; �; h

t�1) which
determines a probability distribution over the second reportm2t, and a function �(atjet; m1t; m2t; �; rt; h

t�1)

which determines the action. Again, to save on notation it will be useful to join the last
two elements of the strategy into a joint probability distribution �(m2t; atjet; m1t; �; rt; h

t�1).
Since the second report m2t cannot depend on the report rt by the planner, strategies are
chosen subject to the constraint:

X
A

�(m2t; atjet; m1t; �t; rt; h
t�1) =

X
A

�(m2t; atjet; m1t; �t; �rt; h
t�1) (39)

for all m2t, et, m1t, �t, ht�1, rt, and �rt.

We use p(ht) to denote the probability of history h
t. This probability is a function of

the outcome function and the strategy, but we use p(ht) simply as a shorthand to avoid
writing out the entire sequence of underlying probabilities. In the initial period, for h0 =
fe0; m10; m20; �0; r0; a0g we have:

p(h
0
) = p(e0)�(m10je0; h

�1
)�(�0; r0jm10; m20; g

�1
)�(m20; a0je0; m10; �0; r0; h

�1
); (40)

where p(e0) is the exogenously given probability of state e0 in the initial period. In sub-
sequent periods, the probability distribution over the endowment depends on the action
in the previous period. Since the action in the last period is a part of the history, we can
write this probability as p(etjht�1). The probability of history h

t is then given by:

p(h
t
) = p(h

t�1
)p(etjh

t�1
)�(m1tjet; h

t�1
)�(�t; rtjm1t; m2t; g

t�1
)�(m2t; atjet; m1t; �t; rt; h

t�1
):

(41)
Here ht�1 is the history up to time t� 1 that is contained in history h

t. For t � k, p(htjhk)
denotes the probability of history h

t, conditional that history h
k occurred.

For a given outcome function and strategy, the expected utility of the agent is given by:

U(�; �) �

1X
t=0

�
t

"X
Ht�1

p(h
t�1

)

�X
E

p(ejht�1)

� X
M1;M2;T;R;A

�(m1tjet; h
t�1)�(�t; rtjm1t; m2t; g

t�1)

�(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

��#
: (42)
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The expression above represents the utility of the agent as of time zero. We will also
require that the agent use a maximizing strategy at all other nodes, even if they occur
with probability zero. The utility of the agent given that state h

k through k has been
realized is given by:

U(�; �jhk) �

1X
t>k

�
t

" X
ht�1jhk

p(ht�1jhk)

�X
E

p(ejht�1)

� X
M1;M2;T;R;A

�(m1tjet; h
t�1)

�(�t; rtjm1t; m2t; g
t�1

)�(m2t; atjet; m1t; �t; rt; h
t�1

)u(et + �t � at)

��#
: (43)

We now want to define an equilibrium strategy as a strategy that maximizes the utility of
the agent at all nodes. The requirement that the strategy be utility maximizing can be
described by a set of inequality constraints. Specifically, for given outcome function �

?,
for any alternative strategy �̂ and any history hk, an equilibrium strategy �? has to satisfy:

8�̂; h
k :

1X
t>k

�
t

" X
ht�1jhk

p(ht�1jhk)

�X
E

p(ejht�1)

� X
M1;M2;T;R;A

�
?(m1tjet; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1)�?(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

��#

�

1X
t>k

�
t

" X
ht�1jhk

p̂(ht�1jhk)

�X
E

p(ejht�1)

� X
M1;M2;T;R;A

�̂(m1tjet; h
t�1)

�
?(�t; rtjm1t; m2t; g

t�1)�̂(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

��#
; (44)

where p̂(ht�1jhk) is the probability generated under �̂. Inequality (44) imposes optimiza-
tion from any history h

k on. In addition, we also require that the strategy be optimal at
any node that starts after an arbitrary first report in a period is made, i.e., even if in any
period k + 1 the first report was generated by a strategy �̂, it is optimal to revert to �

?

from the second report in period k + 1 on. For any alternative strategy �̂ and any history
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h
k, an equilibrium strategy �

? therefore also has to satisfy:

8�̂; h
k
:
X
E

p(ejh
k
)

� X
M1;M2;T;R;A

�̂(m1k+1jek+1; h
k
)

�
?(�k+1; rk+1jm1k+1; m2k+1; g

k)�?(m2k+1; ak+1jek+1; m1k+1; �k+1; rk+1; h
k)u(ek+1+�k+1�ak+1)

�

+

1X
t>k+1

�
t

" X
ht�1jhk

p(ht�1jhk)

�X
E

p(ejht�1)

� X
M1;M2;T;R;A

�
?(m1tjet; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1)�?(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

��#

�

1X
t>k

�
t

" X
ht�1jhk

p̂(ht�1jhk)

�X
E

p(ejht�1)

� X
M1;M2;T;R;A

�̂(m1tjet; h
t�1)

�
?(�t; rtjm1t; m2t; g

t�1)�̂(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

��#
: (45)

This condition is not restrictive, since by (44) even without this condition the agent chooses
the second report optimally conditional on any first report that occurs with positive prob-
ability. The only additional effect of condition (45) is to force the agent to choose the
second report and action optimally even conditional on first reports that occur with zero
probability. Requiring optimal behavior off the equilibrium path will help us later in de-
riving recursive formulations of the general game that are open to efficient computation.

We are now able to provide a formal definition of an equilibrium strategy:

Definition 1 Given an outcome function �
?, an equilibrium strategy is a strategy such that in-

equalities (44) and (45) are satisfied for all, k, all hk 2 H
k, and all alternative strategies �̂.

Of course, for hk = h
�1 this condition includes the maximization of expected utility at

time zero (42).

We imagine the planner as choosing an outcome function and a corresponding equilib-
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rium strategy subject to the requirement that the agent realize reservation utility, W0:

1X
t=0

�
t

"X
Ht�1

p(ht�1)

�X
E

p(ejht�1)

� X
M1;M2;T;R;A

�(m1tjet; h
t�1)

�(�t; rtjm1t; m2t; g
t�1)�(m2t; atjet; m1t; �t; rt; h

t�1)u(et + �t � at)

��#
=W0: (46)

Definition 2 A feasible contract f�; �g is an outcome function � together with a corresponding
equilibrium strategy � such that the agent realizes his initial reservation utility.

Definition 3 A feasible allocation is a probability distribution over endowments, transfers and
actions that is implied by a feasible contract.

The set of feasible contracts is characterized by the promise-keeping constraint (46), by the
optimality conditions (44) and (45), and a number of adding-up constraints that ensure
that both outcome function and strategy consist of probability measures.

The objective function of the planner is:

V (�; �) �

1X
t=0

Q
t

"X
Ht�1

p(h
t�1

)

�X
E

p(ejh
t�1

)

� X
M1;M2;T;R;A

�(m1tjet; h
t�1

)

�(�t; rtjm1t; m2t; g
t�1)�(m2t; atjet; m1t; �t; rt; h

t�1)(��t)

��#
(47)

The planner’s problem is to choose a feasible contract that maximizes (47). By construc-
tion, this will be Pareto optimal.

Definition 4 An optimal contract is a feasible contract that solves the planner’s problem.

Proposition 1 There are reservation utilities W0 2 R such that an optimal contract exists.

Proof: We need to show that for some W0 the set of feasible contracts is nonempty
and compact, and the objective function is continuous. To see that the set of feasible
contracts is nonempty, notice that the planner can assign a zero transfer in all periods,
and always send the same message. If the strategy of the agent is to choose the actions
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that are optimal under autarky, clearly all constraints are trivially satisfied for the corre-
sponding initial utility W0. The set of all contracts that satisfy the probability-measure
constraints is compact in the product topology, since � and � are probability measures on
finite support. Since only equalities and weak inequalities are involved, it can be shown
that the constraints (46), (44), and (45) define a closed subset of this set. Since closed
subsets of compact sets are compact, the set of all feasible contracts is compact. We still
need to show that the objective function of the planner is continuous. Notice that the
product topology corresponds to pointwise convergence, i.e., we need to show that for a
sequence of contracts that converges pointwise, the surplus of planner converges. This
is easy to show since we assume that the discount factor of the planner is smaller than
one, and that the set of transfers is bounded. Let �n; �n, be a sequence of contracts that
converges pointwise to �; �, and choose � > 0. We have to show that there is an N such
that jV (�n; �n) � V (�; �)j < �. Since the transfer � is bounded and Q < 1, there is an T

such that the discounted surplus of the planner from time T on is smaller than �=2. Thus
we only have to make the difference for the first T periods smaller than �=2, which is the
usual Euclidian finite-dimensional case. 2

A.2 Derivation of Program 1

The Revelation Principle

Now we want to use the revelation principle to reduce the setup to Program 1. The first
step is to to show that without loss of generality we can restrict attention to the case
were there is just one message space each for the agent and the planner. The message
space of the agent is equal to the space of endowments E, and the agent will be induced
to tell the truth. The message space for the planner is equal to the space of actions A,
and it will be in the interest of the agent to follow the recommended action. Since we
fix the message spaces and require that truth-telling and obedience be optimal for the
agent, instead of allowing any optimal strategy as before, it has to be the case that the set
of feasible allocations in this setup is no larger than in the general setup with arbitrary
message spaces. The purpose of this section is to show that the set of feasible allocations
is in fact identical. Therefore there is no loss of generality in restricting attention to truth-
telling and obedience from the outset. Our strategy is to start with a feasible allocation in the
general setup, and then to derive a feasible outcome function in the restricted setup that

49



implements the same allocation. In order to do that, we will start with a precise definition
of our new restricted setup.

The planner chooses an outcome function �(�t; atjet; s
t�1) that determines the transfer

and the recommended action as a function of the endowment of the agent and the history
up to the last period. In this setup, the history as known by the planner consists of all
reported endowments, transfers, and recommended actions up to the last period. The
contemporary part of history at time t is denoted st,

st � fet; �t; atg;

the set of all possible st is St = E � T � A, the history up through time t is st,

s
t = fs�1; s0; : : : ; stg;

and the set of all histories up through time t is denoted S
t and is given by:

S
t
� S�1 � S0 � S1 � : : :� St:

The planner chooses an outcome function subject to a number of constraints. First, the
outcome function has to define probability measures. We require that �(�t; atjet; st�1) � 0

for all transfers, actions, endowments and histories, and that:

8et; s
t�1 :

X
T;A

�(�t; atjet; s
t�1) = 1: (48)

Given an outcome function, we define probabilities p(st) over histories and p(etjs
t�1) over

endowments conditional on histories, based on recommended actions, in the obvious
way. Given these probabilities, the outcome function has to deliver reservation utility
W0 to the agent, provided that the agent reports truthfully and takes the recommended
actions:

1X
t=0

�
t

� X
St�1;E;T;A

p(st�1)p(etjs
t�1)�(�t; atjet; s

t�1)u(et + �t � at)

�
= W0: (49)

Finally, it has to be optimal for the agent to tell the truth and follow the recommended
action. We write a possible deviation strategy as a function Æe(s

t�1
; et) that determines the

reported endowment as a function of the history and the true endowment, and a function
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Æa(s
t�1

; et; �t; at) that determines the action as a function of history, endowment, transfer,
and recommended action. Since the action may be different, this deviation also changes
the probability distribution over histories and states. The agent takes this change into
account, and the changed probabilities are denoted as p̂. We require that the actions of
the agent be optimal from any history s

k on. Then for every possible deviation Æe; Æa and
any history s

k, the outcome function has to satisfy:

8Æe; Æa; s
k :

1X
t>k

�
t

� X
St�1;E;T;A

p̂(st�1jsk)p̂(etjs
t�1)�

�
�t; atjÆe(s

t�1
; et); s

t�1
�
u
�
et+�t�Æa(s

t�1
; et; �t; at)

��

�

1X
t>k

�
t

� X
St�1;E;T;A

p(st�1jsk)p(etjs
t�1)�(�t; atjet; s

t�1)u(et + �t � at)

�
: (50)

Definition 5 An outcome function is feasible under truth telling and obedience if it satisfies the
constraints (48), (49) and (50) above.

Definition 6 A feasible allocation in the truth-telling mechanism is a probability distribution
over endowments, transfers and actions that is implied by a feasible outcome function.

We are now ready to state the main result of this section.

Proposition 2 For any message spaces M1, M2, and R, any allocation that is feasible in the
general mechanism is also feasible in the truth-telling mechanism.

Proof: Corresponding to any feasible allocation in the general setup there is a feasible
contract that implements this allocation. Fix a feasible allocation and the corresponding
contract f�?; �?g. We will now define an outcome function for the truth-telling mecha-
nism that implements the same allocation. To complete the proof, then we will have to
show that this outcome function satisfies constraints (48) to (50).

We will define the outcome function such that the allocation is the one implemented by
(�?; �?) along the equilibrium path. To do that, let H t(st) be the set of histories in the
general game that coincide in terms of the endowment, transfer, and action sequence with
history s

t in the restricted game. Likewise, define p(htjst) as the probability of history h
t

conditional on s
t:

p(h
t
js
t
) �

p(ht)P
ht2Ht(st) p(h

t)
(51)

51



If st has zero probability (that is, if the sequence st of endowments, transfers, and actions
occurs with probability zero in the allocation implemented by f�

?
; �

?
g), the definition

of p(htjst) is irrelevant, and is therefore left unspecified. Using (51), we also have the
conditional probability of ht given s

k for t > k:

p(htjsk) =
X

hk2Hk(sk)

p(htjhk)p(hkjsk): (52)

Now we define an outcome function for the truth-telling mechanism by:

�(�t; atjet; s
t�1) �

X
ht2Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?(m1tjet; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjet; m1t; �t; rt; h
t�1) (53)

Basically, the outcome function is gained by integrating out the message spaces M1, M2,
and R.

We now have to verify that with this choice of an outcome function conditions (48) to
(50) above are satisfied. In showing this, we can make use of the fact that f�?; �?g are
probability measures and satisfy (44) and (45).

We start with the probability-measure constraint (48):

8et; s
t�1 :

X
T;A

�(�t; atjet; s
t�1) = 1:

Using definition (53) on the left-hand side yields:

X
T;A

� X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?(m1tjet; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjet; m1t; �t; rt; h
t�1)

�
= 1X

ht�12Ht�1(st�1)

p(h
t�1
js
t�1

)
X

M1;T;M2;R;A

�
?
(m1tjet; h

t�1
)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjet; m1t; �t; rt; h
t�1) = 1
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by a change in the order of summation, and since we sum over probability measures �?

and �, we get:

X
ht�12Ht�1(st�1)

p(ht�1jst�1) = 1 or:

1 = 1;

because of definition (51), thus (48) is satisfied.

The promise-keeping constraint (49) is next:

1X
t=0

�
t

� X
St�1;E;T;A

p(s
t�1

)p(etjs
t�1

)�(�t; atjet; s
t�1

)u(et + �t � at)

�
= W0:

Using definition (53) in the left-hand side yields:

1X
t=0

�
t

� X
St�1;E;T;A

p(st�1)p(etjs
t�1)

X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?(m1tjet; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

�
= W0

1X
t=0

�
t

�X
St�1

X
ht�12Ht�1(st�1)

p(st�1)p(ht�1jst�1)
X
E

p(etjh
t�1)

X
M1;M2;T;R;A

�
?(m1tjet; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

�
= W0

by a change in the order of summation and since p(etjht�1) = p(etjs
t�1) if ht 2 H

t(st),

1X
t=0

�
t

�X
Ht�1

p(ht�1)
X
E

p(etjh
t�1)

X
M1;M2;T;R;A

�
?(m1tjet; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

�
=W0;

where the last step used definition (51). The last equation is (46) and therefore satisfied.
Thus (49) is satisfied.
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The last step is to show that (50) is satisfied for any Æe; Æa, and s
k:

1X
t>k

�
t

� X
St�1;E;T;A

p̂(st�1jsk)p̂(etjs
t�1)�

�
�t; atjÆe(s

t�1
; et); s

t�1
�
u
�
et + �t � Æa(s

t�1
; et; �t; at)

��

�

1X
t>k

�
t

� X
St�1;E;T;A

p(s
t�1
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k
)p(etjs

t�1
)�(�t; atjet; s

t�1
)u(et + �t � at)

�
:

Using definition (53) on both sides gives:

1X
t>k

�
t

� X
St�1;E;T;A

p̂(st�1jsk)p̂(etjs
t�1)

X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?(m1tjÆe(s

t�1
; et); h

t�1)
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?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjÆe(s
t�1

; et); m1t; �t; rt; h
t�1)u(et+�t�Æa(s

t�1
; et; �t; at))

�
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1X
t>k

�
t

� X
St�1;E;T;A

p(st�1jsk)p(etjs
t�1)

X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R
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?(m1tjet; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

�

The deviation of the agent defines a deviation strategy �̂, given by:

�̂(m1tjet; h
t�1) � �

?(m1tjÆe(s
t�1

; et); h
t�1)

and:
�̂(m2t; atjet; m1t; �t; rt; h

t�1
) � �

?
(m2t; atjÆe(s

t�1
; et); m1t; �t; rt; h

t�1
):

Changing the notation for the agent’s strategy in this way we get:

1X
t>k

�
t

� X
St�1;E;T;A

p̂(st�1jsk)p̂(etjs
t�1)

X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X
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�̂(m1tjet; h
t�1)

�
?
(�t; rtjm1t; m2t; g

t�1
(h

t�1
))�̂(m2t; atjet; m1t; �t; rt; h

t�1
)u(et + �t � at)

�

�

1X
t>k

�
t

� X
St�1;E;T;A

p(s
t�1
js
k
)p(etjs

t�1
)

X
ht�12Ht�1(st�1)

p(h
t�1
js
t�1

)
X

M1;M2;R

�
?
(m1tjet; h

t�1
)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

�
(54)
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By a change in the order of summation and since p(etjht�1) = p(etjs
t�1) if ht 2 H

t(st), this
is:

1X
t>k

�
t

�X
St�1

X
ht�12Ht�1(st�1)

p̂(st�1jsk)p(ht�1jst�1)
X
E

p̂(etjh
t�1)

X
M1;M2;T;R;A

�̂(m1tjet; h
t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�̂(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

�

�

1X
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St�1

X
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t�1
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t�1
js
t�1
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X
E

p(etjh
t�1

)
X

M1;M2;T;R;A

�
?
(m1tjet; h

t�1
)

�
?
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t�1
(h

t�1
))�

?
(m2t; atjet; m1t; �t; rt; h

t�1
)u(et + �t � at)

�
:

This in turn can also be written as:

1X
t>k

�
t

�X
Ht�1

p̂(ht�1jsk)
X
E

p̂(etjh
t�1)

X
M1;M2;T;R;A

�̂(m1tjet; h
t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�̂(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

�

�

1X
t>k

�
t

�X
Ht�1

p(ht�1jsk)
X
E

p(etjh
t�1)

X
M1;M2;T;R;A

�
?(m1tjet; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

�
:

In the last equation probabilities are still conditioned on s
k. We can use (52) to condition

probabilities on h
k instead:

X
Hk(sk)

p(hkjsk)

� 1X
t>k
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�X
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E
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t�1(ht�1))�̂(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

��

�

X
Hk(sk)

p(hkjsk)

� 1X
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t

�X
Ht�1

p(h
t�1
jh
k
)
X
E

p(etjh
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X

M1;M2;T;R;A

�
?
(m1tjet; h

t�1
)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

��
:

This inequality can be obtained by summing over both sides of (44) and therefore holds,
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so that (50) is satisfied. Thus the specified contract (53) satisfied all conditions for a feasi-
ble contract, which completes the proof. 2

The Recursive Representation

We now have a version of our general game that imposes truth-telling and obedience,
and yet does not constitute any loss of generality. However, we still allow fully history-
dependent outcome functions. The next step is to reduce the current game to a recursive
version with a vector of promised utilities as the state variable. The result will be Program
1, which stands at the beginning of our discussion in the paper.

We wish to work towards a problem in which the planner has to deliver a vector of
promised utilities at the beginning of period k, with elements depending on the endow-
ment ek. It will be useful to consider a problem in which the planner has to deliver a
vector of reservation utilities w0, depending on the endowment in the initial period. The
original planners problem can then be cast as choosing the vector of initial utility as-
signments w0 which yields the highest expected surplus for the planner, given the initial
probability distribution over states e 2 E.

As before, the choice object of the planner is given by �(�t; atjet; s
t�1). However, we pic-

ture the planner as picking the contract conditional on the initial report e0 by the agent.
The constraints are the same as before, namely (48) to (50), but we will write them down
separately for each initial report e0. The first set of constraints are the probability-measure
constraints (48). For all et; st�1, we require:

8et; s
t�1 :

X
T;A

�(�t; atjet; s
t�1) = 1: (55)

There is now a promise-keeping constraint like (49) below for each possible initial endow-
ment. For all e0, we require:

8e0 :
X
T0;A0

�(�0; a0je0; s
�1)

h
u(e0 + �0 � a0)

+

1X
t=1

�
t
X

St�1;E;T;A

p(st�1js0)p(etjs
t�1)�(�t; atjet; s

t�1)u(et + �t � at)

i
= w0(e0): (56)

Next, akin to (50), we need to guarantee that the agent is obedient, assuming that the
initial report e0 was correct. A deviation consists of an alternative reporting strategy
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Æe(et; s
t�1) from tomorrow on and an alternative action strategy Æa(s

t). We use Æ(st) to de-
note the history that was reported under the deviation if the true history is st, and p̂(�) are
the adjusted probabilities of states st and endowments et. For all e0 and all deviations, we
require:

8e0; Æe; Æa :
X
T0;A0

�(�0; a0je0; s
�1)

h
u(e0 + �0 � Æa(s

0))

+

1X
t=1

�
t
X

St�1;E;T;A

p̂(st�1js0)p̂(etjs
t�1)�(�t; atjÆe(et; s

t�1); Æ(st�1))u(et+�t�Æa(s
t))

i
� w0(e0):

(57)

Finally, an agent needs an incentive to tell the truth already in the initial period. For all
reported e0, all actual ê0 6= e0, and all deviations, we require:

8e0; ê0 6= e0; Æe; Æa :
X
T0;A0

�(�0; a0je0; s
�1)

h
u(ê0 + �0 � Æa(s

0))

+

1X
t=1

�
t

X
St�1;E;T;A

p̂(st�1js0)p̂(etjs
t�1)�(�t; atjÆe(et; Æ(s

t�1)); Æ(st�1))u(et+�t�Æa(s
t))

i
� w0(ê0):

(58)

Constraints (55) to (58) are merely a different of way of writing down our original con-
straints (48) to (50), in a way that will be useful for our recursive representation. Since the
vector of promised utilitieswwill serve as our state variable, it will be important to show
that the set of all feasible utility vectors has nice properties.

Definition 7 The setW is given by all vectorsw 2 R
#E that satisfy constraints (55) to (58) for

some outcome function �(�t; atjet; s
t�1).

Proposition 3 The setW is nonempty and compact.

Proof: (Outline) To see that W is nonempty, notice that the planner can always assign
a zero transfer in every period, and recommend the optimal action that the agent would
have chosen without the planner. For the w0(e) that equals the expected utility of the
agent under autarky under state e, all constraints are satisfied. To see thatW is bounded,
notice that there are finite grids for the endowment, the transfer, and the action. This
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implies that in every period consumption and therefore utility is bounded from above
and from below. Since the discount factor � is smaller than one, total expected utility is
also bounded. Since each w0(e) has to satisfy a promise-keeping constraint with equality,
the set W must be bounded. Finally, we can show that W is closed by a contradiction
argument. Assume that W is not closed. Then there exists a converging sequence wn

such that each element of the sequence is in W, but its limit w is not. Corresponding to
each wn there is a contract �(�t; atjet; st�1)n satisfying constraints (55) to (58). Since the
contracts are within a compact subset of R1 with respect to the product topology, there
is a convergent subsequence with limit �(�t; atjet; st�1). It is easy to show that w must
satisfy (55) to (58) when �(�t; atjet; s

t�1) is the chosen contract. 2

Now we consider the problem of a planner who has promised utility vector w 2W after
the agent has delivered report e0.

Problem P:

V (w0; e0) = max
�

X
T0;A0

�(�0; a0je0; s
�1)

h
��0+

1X
t=1

Q
t
X

St�1;E;T;A

p(st�1js0)p(etjs
t�1)�(�t; atjet; s

t�1)(��t)

i

subject to constraints (55) to (58) above, for a given e0 2 E and w 2W. We want to show
that this problem has a recursive structure.

To do this, we need to define on-path future utilities. For all sk�1, ek, let:

w(ek; s
k�1) =

X
Tk;Ak

�(�k; akjek; s
k�1)

h
u(ek + �k � ak)

+

1X
t=k+1

�
t�k

X
St�1;E;T;A

p(st�1jek; s
k�1))p(etjs

t�1)�(�t; atjet; s
t�1)u(et + �t � at)

i
; (59)

and letw(sk�1) be the vector of these utilities over all ek. We can now show the following
result:

Proposition 4 For allw0 2W and e0 2 E, and for any sk�1 and ek, there is an optimal contract
�
? such that the remaining contract from s

k�1 and ek is an optimal contract for Problem P with
e0 = ek and w0 = w(s

k�1).

Proof: The proof is by construction. We have shown earlier that an optimal contract
exists. Let ~� be an optimal contract from time zero, and �k an optimal contract for e0 = ek
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and w0 = w(s
k�1), with the elements of vector w(sk�1) defined in (59). Now construct a

new contract �? that is equal to �k from (ek; s
k�1) on, and equals ~� until time k and on all

future branches other than ek; s
k�1. We claim that �? is also an optimal contract. To show

this, we have to demonstrate that �? satisfies constraints (55) to (58), and that it maximizes
the surplus of the planner subject to these constraints. To start, notice that the constraints
that are imposed if we compute an optimal contract taking e0 = ek and w0 = w(s

k�1) as
the starting point also constrain the choices of the planner in the original program from
(ek; s

k�1) on. By reoptimizing at (ek; sk�1) in period k as if the game were restarted, the
planner clearly cannot lower his surplus, since no additional constraints are imposed.
Therefore the total surplus from contract �? cannot be lower than the surplus from ~�.
Since ~� is assumed to be an optimal contract, if �? satisfies (55) to (58), it must be opti-
mal as well. Thus we only have to show that (55) to (58) are satisfied, or in other words,
that reoptimizing at ek; sk�1 does not violate any constraints of the original problem. The
probability constraints (55) are satisfied by contract �?, since the reoptimized contract is
subject to the same probability constraints as the original contract. The promise-keeping
constraint (56) is satisfied since the new contract delivers the same on-path utilities by
construction. We still have to show that the incentive constraints (57) and (58) are satis-
fied. We will do this by contradiction. Suppose that (57) is not satisfied by contract �?.
Then there is a deviation Æe(et; s

t�1), Æa(st) such that:

X
T0;A0

�
?(�0; a0je0; s

�1)

h
u(e0 + �0 � Æa(s

0))

+

1X
t=1

�
t
X

St�1;E;T;A

p̂(st�1js0)p̂(etjs
t�1)�?(�t; atjÆe(et; s

t�1); Æ(st�1))u(et+�t�Æa(s
t))

i
> w0(e0):

(60)

Now use w(ek; sk�1; Æ) to denote the continuation utility of the agent from time k on under
the deviation strategy. Now we can rewrite (60) as:

X
T0;A0

�
?(�0; a0je0; s

�1)

h
u(e0 + �0 � Æa(s

0))

+

k�1X
t=1

�
t
X

St�1;E;T;A

p̂(st�1js0)p̂(etjs
t�1)�?(�t; atjÆe(et; s

t�1); Æ(st�1))u(et + �t � Æa(s
t))

+ �
k
X
E;sk�1

p̂(s
k�1

js0)p̂(ekjs
k�1

)w(ek; s
k�1

; Æ)

i
> w0(e0): (61)
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Notice that for sk�1 that are reached with positive probability under the deviation we
have w(ek; sk�1; Æ) � w(ek; Æ(s

k�1)), where Æ(sk) is the history as seen by the planner (re-
ported endowments, delivered transfers, and recommended actions) under the deviation
strategy. Otherwise, either ~� or �k would violate incentive constraints. Therefore (61)
implies:

X
T0;A0

�
?(�0; a0je0; s

�1)

h
u(e0 + �0 � Æa(s

0))

+

k�1X
t=1

�
t
X

St�1;E;T;A

p̂(st�1js0)p̂(etjs
t�1)�?(�t; atjÆe(et; s

t�1); Æ(st�1))u(et + �t � Æa(s
t))

+ �
k
X
E;sk�1

p̂(s
k�1

js0)p̂(ekjs
k�1

)w(ek; Æ(s
k�1

))

i
> w0(e0): (62)

But now the left-hand side of (62) is the utility that the agent gets under plan ~� from
following the deviation strategy until time k, and following the recommendations of the
planner afterwards. Thus (62) contradicts the incentive compatibility of ~�. We obtain a
contradiction, �? actually satisfies (57). The proof for constraint (58) follows the same
lines. This shows that plan �

? is within the constraints of the original problem. Since �?

yields at least as much surplus as ~� and ~� is an optimal contract, �? must be optimal as
well. 2

Given this result, we know that the maximized surplus of the planner can be written as:

V (w0; e0) =
X
A;T

�
?(�0; a0je0; s

�1)

"
��0 +Q

X
E

p(e1js
0)V (e1;w(s

0))

#
: (63)

In light of (63), we can cast the planner’s problem as choosing transfers and actions in
the present period, and choosing continuation utilities from the setW from tomorrow on
conditioned on history s0 = fe0; �0; a0g. We will write the choices of the planner as a func-
tion of the vector of promised utilities w that has to be delivered in the current period,
and the current state e. The choices of the planner are therefore functions �(�; ajw; e) and
�(w0

jw; e; �; a), where� is a probability measure over setW, andw0 are the promised util-
ities from tomorrow on. We still need to determine which constraints need to be placed
on these choices in order to guarantee that the implied contract satisfies (55) to (58). In

60



order to reproduce (55), we need to impose:

X
T;A

�(�; ajw; e) = 1: (64)

The promise-keeping constraint (56) will be satisfied if we impose:

X
T;A

�(�; ajw; e)

"
u(e+ � � a) + �

Z
W

[
X
E

p(e0ja)w0(e0)]�(w0
jw; e; �; a)

#
= w(e): (65)

The incentive constraints are more subtle. We first require that the agent cannot gain by
following another action strategy Æa(�; a), assuming that the reported endowment was
correct:

X
T;A

�(�; ajw; e)

"
u(e+ � � Æa(�; a)) + �

Z
W

[
X
E

p(e0jÆa(�; a))w
0(e0)]�(w0

jw; e; �; a)

#
� w(e):

(66)
A similar constraint on disobedience is also required if the initial report was e, but the
true state was ê, i.e., false reporting:

X
T;A

�(�; ajw; e)

"
u(ê+ � � Æa(�; a)) + �

Z
W

[
X
E

p(e0jÆa(�; a))w
0(e0)]�(w0

jw; e; �; a)

#
� w(ê):

(67)
The constraints above rule out that the agent can gain from disobedience or misreporting
in any period, given that he goes back to truth-telling and obedience from the next pe-
riod on. The constraints therefore imply that (57) and (58) hold for one-time deviations.
We still have to show that (66) and (67) are sufficient to prevent deviations in multiple
periods. For a finite number of deviations, we can show that the original constraints are
satisfied by backward induction. The agent clearly does not gain in the last period when
he deviates, since this is just a one-time deviation and by (66) and (67) is not optimal. Go-
ing back one period, the agent has merely worsened his future expected utility by lying
or being disobedient in the last period. Since one-time deviations do not improve utility,
the agent cannot make up for this. Going on this way, we can show by induction that any
finite number of deviations does not improve utility. Lastly, consider an infinite number
of deviations. Let us assume that there is a deviation that gives a gain of �. Since � < 1,
there is a period T such that at most �=2 utils can be gained from period T on. This implies
that at least �=2 utils have to be gained until period T . But this contradicts our result that
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there cannot be any gain from deviations with a finite horizon.

Thus we are justified to pose the problem of the planner as solving:

V (w; e) = max
��0

X
A;T

�(�; ajw; e)

"
�� + �

Z
W

X
E

p(e0ja)V (w0
; e
0)�(w0

jw; e; �; a)

#
(68)

by choice of � and �, subject to constraints (64) to (67) above. Program 1 is a version of
this problem with a discrete grid for promised utilities as an approximation. We have
assumed that the function V (w; e) is known. In practice, V (w; e) can be computed with
standard dynamic programming techniques. Specifically, the right-hand side of (68) de-
fines an operator T that maps functions V (w; e) into TV (w; e). It is easy to show that T
maps bounded continuous functions into bounded continuos functions, and that T is a
contraction. It then follows that T has a unique fixed point, and the fixed point can be
computed by iterating on the operator T .

Computing the Value Set

The preceding discussion was based on the assumption that the set W of feasible util-
ity vectors is known in advance. In practice, W is not known and needs to be com-
puted alongside the value function V (w; e). W can be computed with the dynamic-
programming methods described in detail in Abreu, Pierce, and Stachetti (1990), hence-
forth APS. An outline of the method follows.

We start by defining an operator B that maps nonempty compact subsets of R#E into
nonempty compact subsets of R#E. LetW0 be a nonempty compact subset ofR#E. Then
B(W0) is defined as follows:

Definition 8 w 2 B(W0) if for all e 2 E there exists a measure � and a probability measure �
onW0 such that the following equations hold:

X
T;A

�(�; ajw; e) = 1; (69)

X
T;A

�(�; ajw; e)

"
u(e+ � � a) + �

Z
W0

[
X
E

p(e0ja)w0(e0)]�(w0
jw; e; �; a)

#
= w(e); (70)
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X
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u(e+ � � Æa(�; a)) + �

Z
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X
E

p(e0jÆa(�; a))w
0(e0)]�(w0

jw; e; �; a)

#
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(71)
and:

X
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�(�; ajw; e)

"
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Z
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[
X
E

p(e0jÆa(�; a))w
0(e0)]�(w0

jw; e; �; a)

#
� w(ê):

(72)

Notice that constraints (69) to (72) are almost identical to (64) to (67), the only difference
being that integration occurs over W0 instead of W. Intuitively, the set B(W0) consists
of all utility vectors w that are feasible today (observing all incentive constraints), given
that utility vectors from tomorrow on are drawn from the set W0. The fact that B maps
compact set into compact sets follows from the fact that all constraints are linear and
involve only weak inequalities. Clearly, the true set of feasible utility vectors W satisfies
W = B(W), thusW is a fixed point of B. The computational approach described in APS
consists of using B to define a shrinking sequence of sets that converges toW.

To do this, we need to start with a set W0 that is known to be larger than W a priori. In
our case, this is easy to do, since consumption is bounded and therefore lifetime utility is
bounded above and below. We can chooseW0 as an interval inR#E from a lower bound
that is lower than the utility from receiving the lowest consumption forever to a number
that exceeds utility from consuming the highest consumption forever. We can now define
a sequence of sets Wn by defining Wn+1 as Wn+1 = B(Wn). We have the following
results:

Proposition 5

� The sequenceWn is shrinking, i.e., for any n,Wn+1 is a subset ofWn.

� For all n,W is a subset ofWn.

� The sequenceWn converges to a limit �W, andW is a subset of �W.

To see thatWn is shrinking, we only need to show thatW1 is a subset ofW0. SinceW0 is
an interval, it suffices to show that the upper bound ofW1 is lower than the upper bound
ofW0, and that the lower bound ofW1 is higher than the lower bound ofW0. The upper
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bound of W1 is reached by assigning maximum consumption in the first period and the
maximum utility vector inW0 from the second period on. But the maximum utility vector
W0 by construction corresponds to consuming more than maximum consumption every
period, and since utility is discounted, the highest utility vector inW1 therefore is smaller
than the highest utility vector inW0.

To see that W is a subset of all Wn, notice that by the definition of B, if C is a subset of
D, B(C) is a subset of B(D). SinceW is a subset ofW0 andW = B(W), we have thatW
is a subset ofW1 = B(W0), and correspondingly for all the other elements.

Finally,Wn has to converge to a nonempty limit since it is a decreasing sequence of com-
pact sets, and the nonempty setW is a subset of all elements of the sequence.

Up to this point, we know that Wn converges to �W and that W is a subset of �W. What
we want to show is that �W and W are actually identical. What we still need to show,
therefore, is that �W is also a subset ofW.

Proposition 6 The limit set �W is a subset of the true value setW.

The outline of the proof is as follows. To show that an elementw of �W is inW, we have to
find �(�t; atjet; s

t�1) that satisfy constraints (55) to (58) for w. These �(�t; atjet; st�1) can be
constructed period by period from the � that are implicit in the definition of the operator
B. Notice that in each period continuation utilities are drawn from the same set �W, since
�W as the limit of the sequenceWn satisfies �W = B( �W). By definition of B, the resulting
�(�t; atjet; s

t�1) satisfy the period-by-period constraints (64) to (67). We therefore need to
show that satisfying the period-by-period constraints (with a given set of continuation
utilities) is equivalent to satisfying the original constraints (55) to (58), which we have
done already earlier in the discussion of Proposition 4.

A.3 Derivation of Program 2

The Revelation Principle Once Again

We now will follow the same steps as above to derive Program 2. In Program 2, the agent
gets to report the endowment twice, once before the transfer is received, and another time
before the planner recommends an action. While on the equilibrium path the agent will
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tell the truth twice, having two reports allows us to specify off-path behavior, which in
turn simplifies computations.

We start by applying the revelation principle. We define a restricted version of the game
in which there are two messages from the agent and a recommendation by the planner.
The agent will be required both to tell the truth and to be obedient. Both message spaces
of the agent are equal to the space of endowmentsE. The message space for the planner is
equal to the space of actions A, and the agent will be required to follow the recommended
action. The point again is that requiring or inducing honesty and obedience can be done
without loss of generality.

The planner chooses an outcome function at t �(�t; atje1t; e2t; st�1) that determines the
transfer and the action as a function of the two reported endowments by the agent and
the history up to period t � 1. Notice that since this function is also specified for the
case that the two reports differ, the planner in effect specifies behavior off the equilibrium
path. The history as known by the planner consists of all reported endowments, transfers,
and recommended actions up to the last period. As before, the contemporary history at
time t is denoted st,

st � fe1t; e2t; �t; atg;

the set of all possible st is St, the history up through and including time t is st,

s
t
= fs�1; s0; : : : ; stg;

and the set of all histories up through time t is denoted S
t and is given by:

S
t
� S�1 � S0 � S1 � : : :� St:

The planner chooses an outcome function subject to a number of constraints. First, the
outcome function has to define probability measures. We require that �(�t; atjet; st�1) � 0

for all transfers, actions, endowments and histories, and that:

8e1t; e2t; s
t�1 :

X
T;A

�(�t; atje1t; e2t; s
t�1

) = 1: (73)

Next, the transfer � cannot depend on the second report e2t, since the second report is
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made only after the agent receives the transfer. This implies the following condition:

8�t; e1t; e2t; �e2t; s
t�1 :

X
A

�(�t; atje1t; e2t; s
t�1) =

X
A

�(�t; atje1t; �e2t; s
t�1): (74)

Given an outcome function, probabilities p(st) and p(etjs
t�1) of histories and endowments

are defined in the obvious way. Given these probabilities, the outcome function has to
deliver reservation utilityW0 to the agent, provided that the agent reports truthfully twice
and takes the recommended actions:

1X
t=0

�
t

� X
St�1;E;T;A

p(st�1)p(etjs
t�1)�(�t; atjet; et; s

t�1)u(et + �t � at)

�
= W0: (75)

Also, it has to be optimal for the agent to tell the truth each time and follow the recom-
mended action. We will write a possible deviation strategy as a function Æe1(s

t�1
; et) that

determines the first reported endowment as a function of the history and and the true
endowment, a function Æe2(s

t�1
; et) that determines the second reported endowment as a

function of the history st�1 and and the true endowment et, and a function Æa(st�1; et; �t; at)
that determines the action a as a function of history s

t�1, endowment et, transfer �t, and
recommended action at. Since the action may be different, this deviation also changes
the probability distribution over histories and states. The agent takes this change into
account, and the changed probabilities are denoted as p̂.

We require that truth-telling and obedience be optimal for the agent, starting in any pe-
riod and from any history. In addition, we also require that the prescribed actions be
optimal for the agent at the node in the middle of a period, i.e., after the transfer has been
assigned, regardless of what the first report was. Thus even if the agent misreports the
endowment at the beginning of the period, it has to be optimal to report truthfully at the
second report. As we will see later on, this requirement leads to major simplifications in
the computation of the optimal outcome function.

The first requirement is that the prescribed reports and actions be optimal, given any
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history h
k that has been already realized, inducing honesty and obedience in the future:

8h
k
; Æe1; Æe2; Æa :

1X
t>k

�
t

� X
St�1;E;T;A

p̂(st�1jsk)p̂(etjs
t�1)

�(�t; atjÆe1(s
t�1

; et); Æe2(s
t�1

; et); s
t�1)u(et + �t � Æa(s

t))

�

�

1X
t>k

�
t

� X
St�1;E;T;A

p(st�1jsk)p(etjs
t�1)�(�t; atjet; et; s

t�1)u(et + �t � at): (76)

In fact, we place an even more strict restriction on the outcome function. Given history
h
k, we require that even if the first report in period k + 1 was wrong, it is optimal for the

agent to tell the truth at the second report in k + 1 and follow the recommended action,
and to be honest and obedient in the future. This implies the following condition:

8h
k
; Æe1; Æe2; Æa :

1X
t>k

�
t

� X
St�1;E;T;A

p̂(st�1)p̂(etjs
t�1)

�
�
(�t; atjÆe1(s

t�1
; et); Æe2(s

t�1
; et); s

t�1)
�
u
�
et + �t � Æa(s

t)
��

� �
k+1

� X
E;T;A

p(etjs
k)�
�
�k+1; ak+1jÆe1(s

k
; ek+1); ek+1; s

k
�
u(ek+1 + �k+1 � ak+1)

�

+

1X
t>k+1

�
t

� X
St�1;E;T;A

p(st�1jsk)p(etjs
t�1)�(�t; atjet; et; s

t�1)u(et + �t � at)

�
(77)

Definition 9 An outcome function is feasible under truth telling and obedience if it satisfies the
constraints (73), (74), (75), (76), and (77) above.

Definition 10 A feasible allocation is a probability distribution over endowments, transfers and
actions that is implied by a feasible outcome function.

We are now going to show that this setup does not restrict the set of feasible allocations.

Proposition 7 For any message spaces M1, M2, and R, any allocation that is feasible in the
general mechanism is also feasible in the truth-telling mechanism.

Proof: Corresponding to any feasible allocation in the general setup there is a feasible
contract that implements this allocation. Fix this contract (�?; �?). We will now define an
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outcome function for the truth-telling mechanism that implements the same allocation.
To complete the proof, we then will have to show that this outcome function satisfies
constraints (73) to (77).

We will define the outcome function such that the allocation is the one implemented by
(�?; �?) along the equilibrium path. To do that, let H t(st) be the set of histories in the
general game that coincide in terms of the transfer and action sequence with history s

t in
the restricted game, and such that the endowment sequence in h

t matches the sequence
of second reports in h

t. At this point, we restrict attention to those st in which the agent
makes the same report twice. Define p(htjst) is the probability of history ht conditional on
s
t, i.e:

p(h
t
js
t
) �

p(ht)P
ht2Ht(st) p(h

t)
(78)

If st occurs with zero probability under (�?; �?), we set p(htjst) to zero. We still need to
define probabilities for the case when the agent makes differing reports with a period.
The probabilities are chosen to resemble the case in which the agent was mistaken about
the endowment when making the first report, but correct at the second report:

p(h
t
js
t
) � p(h

t�1
js
t�1

)p(e2tjh
t�1

)X
M1;M2;R

�(m1tje1t; h
t�1)�(�t; rtjm1t; m2t; g

t�1)�(m2t; atje2t; m1t; �t; rt; h
t�1): (79)

Now we define an outcome function for the truth-telling mechanism by:

�(�t; atje1t; e2t; s
t�1) �

X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?(m1tje1t; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atje2t; m1t; �t; rt; h
t�1): (80)

We now have to verify that this outcome function satisfies the conditions (73) to (77)
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above. Using definition (80) in (73) yields:

X
T;A

�(�t; atje1t; e2t; s
t�1) =

X
T;A

� X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?(m1tje1t; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atje2t; m1t; �t; rt; h
t�1)

�

=
X

ht�12Ht�1(st�1)

p(h
t�1
js
t�1

)
X

M1;T;M2;R;A

�
?
(m1tje1t; h

t�1
)

�
?
(�t; rtjm1t; m2t; g

t�1
(h

t�1
))�

?
(m2t; atje2t; m1t; �t; rt; h

t�1
)

by a change in the order of summation, and since we sum over probability measures, we
get:

=
X

ht�12Ht�1(st�1)

p(ht�1jst�1)

=1;

thus (73) is satisfied. Using definition (80) in (74) gives:

X
A

� X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?(m1tje1t; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atje2t; m1t; �t; rt; h
t�1)

�

=
X
A

� X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?(m1tje1t; h

t�1)

�
?
(�t; rtjm1t; m2t; g

t�1
(h

t�1
))�

?
(m2t; atj�e2t; m1t; �t; rt; h

t�1
)

�
:
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Using (38) and changing the order of summation, this is:

X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?(m1tje1t; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))
X
M2;A

�
�
?(m2t; atje2t; m1t; �t; rt; h

t�1)

�

=
X

ht�12Ht�1(st�1)

p(ht�1jst�1)
X
M1;R

�
?(m1tje1t; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))
X
M2;A

�
�
?(m2t; atj�e2t; m1t; �t; rt; h

t�1)

�
;

or:

X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?(m1tje1t; h

t�1)�?(�t; rtjm1t; m2t; g
t�1(ht�1))

=
X

ht�12Ht�1(st�1)

p(ht�1jst�1)
X
M1;R

�
?(m1tje1t; h

t�1)�?(�t; rtjm1t; m2t; g
t�1(ht�1)):

Both sides are identical now, thus (74) is satisfied. Using definition (80) in (75) yields:

1X
t=0

�
t

� X
St�1;E;T;A

p(st�1)p(etjs
t�1)�(�t; atjet; et; s

t�1)u(et + �t � at)

�

=

1X
t=0

�
t

� X
St�1;E;T;A

p(st�1)p(etjs
t�1)

X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?(m1tjet; h

t�1)

�
?
(�t; rtjm1t; m2t; g

t�1
(h

t�1
))�

?
(m2t; atjet; m1t; �t; rt; h

t�1
)u(et + �t � at)

�

=

1X
t=0

�
t

�X
St�1

X
ht�12Ht�1(st�1)

p(st�1)p(ht�1jst�1)
X
E

p(etjh
t�1)

X
M1;M2;T;R;A

�
?(m1tjet; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

�

70



by a change in the order of summation and since p(etjht�1) = p(etjs
t�1) if ht 2 H

t(st),

=

1X
t=0

�
t

�X
Ht�1

p(ht�1)
X
E

p(etjh
t�1)

X
M1;M2;T;R;A

�
?(m1tjet; h

t�1)

�
?
(�t; rtjm1t; m2t; g

t�1
(h

t�1
))�

?
(m2t; atjet; m1t; �t; rt; h

t�1
)u(et + �t � at)

�

by using definition (51),

= W0

by (46). Thus (75) is satisfied. Next, using definition (80) on both sides of (76) gives:

1X
t>k

�
t

� X
St�1;E;T;A

p̂(st�1jsk)p̂(etjs
t�1)

X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?(m1tjÆe1(s

t�1
; et); h

t�1)

�
?
(�t; rtjm1t; m2t; g

t�1
(h

t�1
))�

?
(m2t; atjÆe2(s

t�1
; et); m1t; �t; rt; h

t�1
)u(et + �t � Æa(s

t
))

�

�

1X
t>k

�
t

� X
St�1;E;T;A

p(s
t�1
js
k
)p(etjs

t�1
)

X
ht�12Ht�1(st�1)

p(h
t�1
js
t�1

)
X

M1;M2;R

�
?
(m1tjet; h

t�1
)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

�

By a change in notation for the agent’s strategy this can be written as:

1X
t>k

�
t

� X
St�1;E;T;A

p̂(st�1jsk)p̂(etjs
t�1)

X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�̂(m1tjet; h
t�1

)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�̂(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

�

�

1X
t>k

�
t

� X
St�1;E;T;A

p(s
t�1
js
k
)p(etjs

t�1
)

X
ht�12Ht�1(st�1)

p(h
t�1
js
t�1

)
X

M1;M2;R

�
?
(m1tjet; h

t�1
)

�
?
(�t; rtjm1t; m2t; g

t�1
(h

t�1
))�

?
(m2t; atjet; m1t; �t; rt; h

t�1
)u(et + �t � at)

�
:

This inequality is identical to (54), and it was shown above that (54) is equivalent to (44)
and therefore holds. Finally, we will show that (77) holds by applying much the same
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procedure. Using definition (80) on both sides of (77) gives:

1X
t>k

�
t

� X
St�1;E;T;A

p̂(st�1jsk)p̂(etjs
t�1)

X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?(m1tjÆe1(s

t�1
; et); h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjÆe2(s
t�1

; et); m1t; �t; rt; h
t�1)u(et + �t � Æa(s

t))

�

� �
k+1

� X
E;T;A

p(etjs
k)
X
Hk(sk)

p(hkjsk)
X

M1;M2;R

�
?(m1k+1jÆe1(s

k
; ek+1); h

k(hk+1))

�
?(�k+1; rk+1jm1k+1; m2k+1; g

k(hk+1))�?(m2k+1; ak+1jet; m1k+1; �k+1; rk+1; h
k(hk+1))u(ek+1+�k+1�ak+1)

�

+

1X
t>k+1

�
t

� X
St�1;E;T;A

p(st�1jsk)p(etjs
t�1)

X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?(m1tjet; h

t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�?(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

�

By a change in notation for the agent’s strategy this can be written as:

1X
t>k

�
t

� X
St�1;E;T;A

p̂(st�1jsk)p̂(etjs
t�1)

X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�̂(m1tjet; h
t�1)

�
?(�t; rtjm1t; m2t; g

t�1(ht�1))�̂(m2t; atjet; m1t; �t; rt; h
t�1)u(et + �t � at)

�

� �
k+1

� X
E;T;A

p(etjs
k)
X
Hk(sk)

p(hkjsk)
X

M1;M2;R

�̂(m1k+1jek+1; h
k(hk+1))

�
?(�k+1; rk+1jm1k+1; m2k+1; g

k(hk+1))�?(m2k+1; ak+1jet; m1k+1; �k+1; rk+1; h
k(hk+1))u(ek+1+�k+1�ak+1)

�

+

1X
t>k+1

�
t

� X
St�1;E;T;A

p(st�1jsk)p(etjs
t�1)

X
ht�12Ht�1(st�1)

p(ht�1jst�1)
X

M1;M2;R

�
?
(m1tjet; h

t�1
)

�
?
(�t; rtjm1t; m2t; g

t�1
(h

t�1
))�

?
(m2t; atjet; m1t; �t; rt; h

t�1
)u(et + �t � at)

�
;

and this equation can be transformed into (45) with exactly the same steps that were used
above. 2

The Recursive Representation

As before with Program 1, the next step is to reduce the current game to a recursive
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version with a vector of promised utilities as the state variable. The result will be Program
2.

Again, we consider a problem in which the planner has to deliver a vector of reservation
utilities w0, depending on the endowment in the first period.

The choice object of the planner is given by �(�t; atje1t; e2t; s
t�1). The planner picks the

contract conditional on the initial report e10 (the first report in period 0) by the agent.
The constraints are the same as before, but we will write them down separately for each
initial report e10. The first set of constraints are the probability-measure constraints. For
all et; st�1, we require:

8e1t; e2t; s
t�1 :

X
T;A

�(�t; atje1t; e2t; s
t�1) = 1: (81)

As before, we need to impose a consistency constraint to ensure that the transfer � does
not depend on the second report e2t:

8�t; e1t; e2t; �e2t; s
t�1 :

X
A

�(�t; atje1t; e2t; s
t�1) =

X
A

�(�t; atje1t; �e2t; s
t�1): (82)

There is a promise-keeping constraint for each possible initial endowment. For all e0, we
require:

8e0 :
X
T0;A0

�(�0; a0je0; e0; s
�1)

h
u(e0 + �0 � a0)

+

1X
t=1

�
t
X

St�1;E;T;A

p(st�1js0)p(etjs
t�1)�(�t; atjet; et; s

t�1)u(et + �t � at)

i
= w0(e0): (83)

Next, we need to guarantee that the agent is obedient, assuming that the second report
in period zero ê0 was correct. A deviation consists of an alternative reporting strategy
Æe1(et; s

t�1), Æe2(et; st�1) from the second period on and an alternative action strategy Æa(s
t).

We use Æ(st) to denote the history that was reported under the deviation if the true history
is st, and p̂(�) are the adjusted probabilities of states st and endowments et. For all e0, ê0,
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and all deviations, we require:

8e0; ê0; Æe1; Æe1; Æa :
X
T0;A0

�(�0; a0je0; ê0; s
�1)

h
u(ê0 + �0 � Æa(s

0))

+

1X
t=1

�
t

X
St�1;E;T;A

p̂(st�1js0)p̂(etjs
t�1)�(�t; atjÆe1(et; s

t�1); Æe2(et; s
t�1); Æ(st�1))u(et+�t�Æa(s

t))

i

�

X
T0;A0

�(�0; a0je0; ê0; s
�1)

h
u(ê0 + �0 � a0)

+

1X
t=1

�
t

X
St�1;E;T;A

p̂(st�1js0)p̂(etjs
t�1)�(�t; atjet; et; s

t�1); st�1)u(et + �t � at)

i
(84)

We also have to make sure that the agent prefers to report the correct endowment ê0 at
the second report:

8e0; ê0;
^̂e0; Æe1; Æe1; Æa :

X
T0;A0

�(�0; a0je0; ^̂e0; s
�1)

h
u(ê0 + �0 � Æa(s

0))

+

1X
t=1

�
t
X

St�1;E;T;A

p̂(st�1js0)p̂(etjs
t�1)�(�t; atjÆe1(et; s

t�1); Æe2(et; s
t�1); Æ(st�1))u(et+�t�Æa(s

t))

i

�

X
T0;A0

�(�0; a0je0; ê0; s
�1)

h
u(ê0 + �0 � a0)

+

1X
t=1

�
t
X

St�1;E;T;A

p̂(st�1js0)p̂(etjs
t�1)�(�t; atjet; et; s

t�1); st�1)u(et + �t � at)

i
(85)

Finally, an agent needs incentives to tell the truth already at the first report. Since the con-
straints above ensure that from the second report on the agent will not deviate, deviations
in actions do not need to be considered:

8e0; ê0 6= e0; :
X
T0;A0

�(�0; a0je0; ê0; s
�1)

h
u(ê0 + �0 � a0)

+

1X
t=1

�
t

X
St�1;E;T;A

p(st�1js0)p(etjs
t�1)�(�t; atjet; et; s

t�1)u(et + �t � at)

i
� w0(ê0): (86)

Constraints (81) to (86) are merely a different of way of writing down our original con-
straints, in a way that will be useful for our recursive representation. Since the vector of
promised utilities w will serve as our state variable, it will be important to show that the
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set of all feasible utility vectors has nice properties.

Definition 11 The set W is given by all vectors w 2 R
#E that satisfy constraints (81) to (86)

for some outcome function �(�t; atjet; et; st�1).

Proposition 8 The setW is nonempty and compact.

Proof: (See proof for Proposition 3) 2

Now we consider the problem of a planner who has promised utility vector w 2W, and
who has received the initial report e0 (the first report in the initial period).

Problem P:

V (w0; e0) = max
�

X
T0;A0

�(�0; a0je0; e0; s
�1)

h
��0+

1X
t=1

Q
t

X
St�1;E;T;A

p(st�1js0)p(etjs
t�1)�(�t; atjet; et; s

t�1)(��t)

i

Subject to constraints (81) to (86) above, for a given e0 2 E andw 2W. We want to show
that this problem has a recursive structure.

To do this, we need to define on-path future utilities. For all sk�1, ek, let:

w(ek; s
k�1) =

X
Tk;Ak

�(�k; akjek; ek; s
k�1)

h
u(ek + �k � ak)

+

1X
t=k+1

�
t�k

X
St�1;E;T;A

p(st�1jek; s
k�1))p(etjs

t�1)�(�t; atjet; et; s
t�1)u(et + �t � at)

i
; (87)

and letw(sk�1) be the vector of these utilities over all ek. We can now show the following
result:

Proposition 9 For allw0 2W and e0 2 E, and for any sk�1 and ek, there is an optimal contract
�
? such that the remaining contract from s

k�1 and ek is an optimal contract for Problem P with
e0 = ek and w0 = w(s

k�1).

Proof: The proof is by construction. We have shown earlier that an optimal contract
exists. Let ~� be an optimal contract from time zero, and �k an optimal contract for e0 = ek

and w0 = w(sk�1). Now construct a new contract �? that is equal to �k from (ek; s
k�1)
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on, and equals ~�? until time k and on all branches other than ek; s
k�1. We claim that �?

is an optimal contract. To show this, we have to demonstrate that �? satisfies constraints
(81) to (86), and that it maximizes the surplus of the planner subject to these constraints.
To start, notice that the constraints that are imposed if we compute an optimal contract
taking e0 = ek and w0 = w(sk�1) as the starting point also constrain the choices of the
planner in the original program from (ek; s

k�1) on. By reoptimizing at (ek; sk�1) as if the
game were restarted, the planner clearly cannot lower his surplus, since no additional
constraints are imposed. Therefore the total surplus from contract �? cannot be lower
than the surplus from ~�. Since ~� is assumed to be an optimal contract, if �? satisfies
(81) to (86), it must be optimal as well. Thus we only have to show that (81) to (86) are
satisfied, or in other words, that reoptimizing at ek; sk�1 does not violate any constraints
of the original problem. The probability and consistency constraints (81) and (82) are
satisfied by contract �?, since the reoptimized contract is subject to the same probability
constraints as the original contract. The promise-keeping constraint (83) is satisfied since
the new contract delivers the same on-path utilities by construction. We still have to
show that the incentive constraints (84), (85), and (86) are satisfied. We will do this by
contradiction.

Suppose that (84) is not satisfied by contract �?. Then there is a deviation Æe1(et; s
t�1),

Æe2(et; s
t�1), Æa(st) such that:

X
T0;A0

�
?
(�0; a0je0; ê0; s

�1
)

h
u(ê0 + �0 � Æa(s

0
))

+

1X
t=1

�
t
X

St�1;E;T;A

p̂(s
t�1
js0)p̂(etjs

t�1
)�

?
(�t; atjÆe1(et; s

t�1
); Æe2(et; s

t�1
); Æ(s

t�1
))u(et+�t�Æa(s

t
))

i

>

X
T0;A0

�
?
(�0; a0je0; ê0; s

�1
)

h
u(ê0 + �0 � a0)

+

1X
t=1

�
t
X

St�1;E;T;A

p̂(s
t�1
js0)p̂(etjs

t�1
)�

?
(�t; atjet; et; s

t�1
); s

t�1
)u(et + �t � at)

i
(88)

Now use w(ek; sk�1; Æ) to denote the continuation utility of the agent from time k on under
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the deviation strategy. Now we can rewrite (89) as:

X
T0;A0

�
?(�0; a0je0; ê0; s

�1)

h
u(ê0 + �0 � Æa(s

0))

+

k�1X
t=1

�
t
X

St�1;E;T;A

p̂(s
t�1
js0)p̂(etjs

t�1
)�

?
(�t; atjÆe1(et; s

t�1
); Æe2(et; s

t�1
); Æ(s

t�1
))u(et+�t�Æa(s

t
))

+ �
k

X
E;sk�1

p̂(sk�1js0)p̂(ekjs
k�1)w(ek; s

k�1
; Æ)

i

>

X
T0;A0

�
?
(�0; a0je0; ê0; s

�1
)

h
u(ê0 + �0 � a0)

+

k�1X
t=1

�
t

X
St�1;E;T;A

p̂(st�1js0)p̂(etjs
t�1)�?(�t; atjet; et; s

t�1); st�1)u(et + �t � at)

+ �
k

X
E;sk�1

p̂(sk�1js0)p̂(ekjs
k�1)w(ek; s

k�1)

i
(89)

Notice that for sk�1 that are reached with positive probability under the deviation we
have w(ek; sk�1; Æ) � w(ek; Æ(s

k�1)), where Æ(sk) is the history as seen by the planner (re-
ported endowments, delivered transfers, and recommended actions) under the deviation
strategy. Otherwise, either ~� or �k would violate incentive constraints. Therefore (89)
implies:

X
T0;A0

�
?(�0; a0je0; ê0; s

�1)

h
u(ê0 + �0 � Æa(s

0))

+

k�1X
t=1

�
t

X
St�1;E;T;A

p̂(s
t�1
js0)p̂(etjs

t�1
)�

?
(�t; atjÆe1(et; s

t�1
); Æe2(et; s

t�1
); Æ(s

t�1
))u(et+�t�Æa(s

t
))

+ �
k

X
E;sk�1

p̂(sk�1js0)p̂(ekjs
k�1)w(ek; s

k�1)

i

>

X
T0;A0

�
?(�0; a0je0; ê0; s

�1)

h
u(ê0 + �0 � a0)

+

k�1X
t=1

�
t

X
St�1;E;T;A

p̂(st�1js0)p̂(etjs
t�1)�?(�t; atjet; et; s

t�1); st�1)u(et + �t � at)

+ �
k

X
E;sk�1

p̂(s
k�1

js0)p̂(ekjs
k�1

)w(ek; s
k�1

)

i
(90)

But now the left-hand side of (90) is the utility that the agent gets under plan ~� from
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following the deviation strategy until time k, and following the recommendations of the
planner afterwards. Thus (90) contradicts the incentive compatibility of ~�. We obtain a
contradiction, �? actually satisfies (84). The proof for constraints (85) and (86) follows the
same lines. This shows that plan �? is within the constraints of the original problem. Since
�
? yields at least as much surplus as ~� and ~� is an optimal contract, �? must be optimal as

well. 2

Given this result, we know that the maximized surplus of the planner can be written as:

V (w0; e0) =
X
A;T

�
?(�0; a0je0; e0; s

�1)

"
��0 +Q

X
E

p(e1js
0)V (e1;w(s

0))

#
: (91)

In light of (91), we can cast the planner’s problem as choosing transfers and actions in the
present period, and choosing continuation utilities from the set W from tomorrow on.
We will write the choices of the planner as a function of the vector of promised utilities
w that has to be delivered in the current period, and the current state e. The choices of
the planner are therefore functions �(�; ajw; e1; e2) and �(w0

jw; e1; e2; �; a), where � is a
probability measure over setW, andw0 are the promised utilities from tomorrow on. We
still need to determine which constraints need to be placed on these choices in order to
guarantee that the implied contract satisfies (81) to (86). In order to reproduce (81), we
need to impose:

8e2 :
X
T;A

�(�; ajw; e; e2) = 1: (92)

The consistency constraint (82) is satisfied if we impose:

8�; e2; �e2 :
X
A

�(�; ajw; e; e2) =
X
A

�(�; ajw; e; �e2): (93)

The promise-keeping constraint (83) will be satisfied if we impose:

X
T;A

�(�; ajw; e; e)

"
u(e+ � � a) + �

Z
W

[
X
E

p(e0ja)w0(e0)]�(w0
jw; e; �; a)

#
= w(e): (94)

We now get to the incentive constraints. The equivalent for constraint (84) can be written

78



separately for each recommended action a:

8ê; �; a; â : u(ê+ � � â) + �

Z
W

[
X
E

p(e0jâ)w0(e0)]�(w0
jw; e; ê; �; a)

� u(ê+ � � a) + �

Z
W

[
X
E

p(e
0
ja)w

0
(e
0
)]�(w

0
jw; e; ê; �; a): (95)

In order to insure that the second report is correct we need to impose:

8ê; �; ^̂e 6= ê; Æ :
X
A;W0

�(�; a; jw; e; ^̂e)

"
u(ê+ � � Æ(a)) + �

Z
W

[
X
E

p(e0jÆ(a))w0(e0)]�(w0
jw; e; ^̂e; �; a)

#

�

X
A;W0

�(�; ajw; e; ê)

"
u(ê+ � � a) + �

Z
W

[
X
E

p(e0ja)w0(e0)]�(w0
jw; e; ê; �; a)

#
:(96)

Finally, to make sure that the first report is correct, we require:

8ê 6= e :
X
T;A

�(�; a; jw; e; ê)

"
u(ê+ � � a) + �

Z
W

[
X
E

p(e0ja)w0(e0)]�(w0
jw; e; ê; �; a)

#
� w(ê):(97)

The constraints above rule out that the agent can gain from misreporting or disobedience
in any period, given that he goes back to truth-telling and obedience from the next period
on. The constraints therefore imply that (84), (85), and (86) hold for one-time deviations.
It can be shown with the same methods used for Program 1 that (95) to (97) imply (84) to
(86) even for a finite or infinite number of deviations.

Thus we are justified to pose the problem of the planner as solving:

V (w; e) = max
��0

X
A;T

�(�; ajw; e; e)

"
�� + �

Z
W

X
E

p(e
0
ja)V (w

0
; e
0
)�(w

0
jw; e; e; �; a)

#
(98)

by choice of � and �, subject to constraints (92) to (97) above. Program 2 is a version of
this problem with a discrete grid for promised utilities. Of course, we now assume that
the function V (w; e) is already known. V (w; e) can be computed with standard dynamic
programming techniques. Specifically, the right-hand side of (98) defines an operator
T that maps functions V (w; e) into TV (w; e). It is easy to show that T maps bounded
continuous functions into bounded continuous functions, and that T is a contraction. It
then follows that T has a unique fixed point, and the fixed point can be computed by

79



iterating on the operator T .

A.4 Equivalence of Programs 1 and 3

We now want to show that Program 3 is equivalent to Program 1. In both programs, the
planner chooses lotteries over transfer, action, and promised utilities. Even though in
Program 3 the planner also chooses utility bounds, in both programs the planner’s utility
depends only on the lotteries, and not on the bounds. The objective functions are identi-
cal. In order to demonstrate that the two programs are equivalent, it is therefore sufficient
to show that the set of feasible lotteries is identical. We therefore have to compare the set
of constraints in the two programs.

Proposition 10 The allocations that can be implemented in Program 3 and 1 are identical.

Proof: We want to show that constraints (22)-(26) in Program 3 place the same restric-
tions on the outcome function �(�) as the constraints (2)-(5) of Program 1. The probability
constraints (2) and (22), the promise-keeping constraints (3) and (23), and the obedience
constraints (4) and (24) are identical. This leaves us with the truth-telling constraints. Let
us first assume we have found a lottery �(�; a;w0

jw; e) that satisfies the truth telling con-
straint (5) of Program 1 for all ê and Æ : T � S ! A. We have to show that there exist
utility bounds v(ê; e; �; a) such that the same lottery satisfies (25) and (26) in Program 3.
For each ê, � , and a, define v(ê; e; �; a) as the maximum of the left hand side of (25) over
all â:

v(ê; e; �; a) � max
â

(X
W0

�(�; a;w
0
jw; e)

h
u(ê+ � � â) + �

X
E

p(e
0
jâ)w

0
(e
0
)

i)
: (99)

Then clearly (25) is satisfied, since the left-hand side of (25) runs over â. Now for each �

and a, define Æ̂(�) by setting Æ̂(�; a) equal to the â that maximizes the left-hand side of (25):

Æ̂(�; a) � argmax
â

(X
W0

�(�; a;w0
jw; e)

h
u(ê+ � � â) + �

X
E

p(e0jâ)w0(e0)

i)
: (100)
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Since �(�; a;w0
jw; e) satisfies (5) for any function Æ(�) by assumption, we have for our

particular Æ̂(�):

X
T;A;W0

�(�; a;w
0
jw; e)

h
u(ê+ � � Æ̂(�; a)) + �

X
E

p(e
0
jÆ̂(�; a))w

0
(e
0
)

i
� w(ê): (101)

By the way we chose Æ̂(�) and the v(�), we have from (25):

X
W0

�(�; a;w
0
jw; e)

h
u(ê+ � � Æ̂(�; a)) + �

X
E

p(e
0
jÆ̂(�; a))w

0
(e
0
)

i
= v(ê; e; �; a): (102)

Substituting the left-hand side into (101), we get:

X
T;A

v(ê; e; �; a) � w(ê): (103)

which is (26).

Conversely, suppose we have found a lottery �(�; a;w0
jw; e) that satisfies (25) and (26) in

Program 3 for some choice of v(ê; e; �; a). By (25), we have then for any ê and â and hence
any Æ : T � S ! A:

X
W0

�(�; a;w0
jw; e)

h
u(ê+ � � Æ(�; a)) + �

X
E

p(e0jÆ(�; a))w0(e0)

i
� v(ê; e; �; a): (104)

Substituting the left-hand side of (104) into the assumed (26) for the v(ê; e; �; a), we main-
tain the inequality:

X
T;A;W0

�(�; a;w
0
jw; e)

h
u(ê+ � � Æ(�; a)) + �

X
E

p(e
0
jÆ(�; a))w

0
(e
0
)

i
� w(ê): (105)

But this is (5) in Program 1. Therefore the sets of constraints are equivalent, which proves
that Program 1 and Program 3 are equivalent. 2

A.5 Equivalence of Programs 3 and 4

We now will show that Program 3 and Program 4 are equivalent in the sense that the same
allocations are feasible in both programs. By allocation we mean a probability distribution
over transfer, storage, and promised future utilities. In order to prove this claim, we will
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start with an allocation that satisfies the constraints in Program 3 and then show that this
allocation is also feasible in Program 4. Afterwards, we will start with an allocation that
is feasible in Program 4, and then show that it is also feasible in Program 3. Since in
both Programs the planner has the same objective of maximizing surplus, this result also
implies that the maximizing allocation will be the same in both programs, as will be the
utility of the planner.

Proposition 11 The allocations that can be implemented in Program 3 and 4 are identical.

Proof: Assume that for a given vector of promised utilities w and a given true state e we
have found an allocation �

?(�; a;w0
jw; e) that satisfies the constraints (22)-(26) of Program

3 for some specification of utility bounds v?(ê; e; �; a). Here and below the ? denotes a
solution to Program 3. We now need to find contracts and utility bounds for Programs
4a and 4b that implement the same allocation. The contracts that we choose have the
property that the planner does not randomize over intermediate utilities in Program 4a.
Given a transfer � , one specific vector of intermediate utilities is assigned in Program 4a.
Given this transfer and intermediate utility vector, in Program 4b the correct distribution
over storage and future utilities is implemented. We will first describe which lotteries
over storage and promised utilities to choose in stage 4b, and then move backwards to
Program 4a.

At stage 4b, the planner recommends an action and assigns a vector of promised utilities,
conditional on the transfer and the vector of interim utilities that were assigned at 4a.
Since we will choose contracts at stage 4a that do not randomize over interim utilities,
for each transfer � we have to specify only one contract at stage 4b. Fix the transfer � .
We want to find a contract �(a;w0) that implements the same distribution over a and w0,
conditional on � , as �?(�; a;w0

jw; e). In order to do this, define:

�(a;w0) �
�
?(�; a;w0

jw; e)P
A�W0 �

?(�; a;w0
jw; e)

: (106)

We also have to define the utility bounds. Our choices are:

v(ê; e; �; a) �
v
?(ê; e; �; a)P

A�W0 �
?(�; a;w0

jw; e)
: (107)

These choices also correspond to a specific vector of interim utilities. We choose these
utilities to ensure that all constraints in Program 4b are satisfied. We write these utilities
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as a function of � so that we can identify which interim utilities correspond to which
transfers in Program 4a. Specifically, we let:

wm(e)(�) �
X
A;W0

�(a;w
0
)

h
u(e+ � � a) + �

X
E

p(e
0
ja)w

0
(e
0
)

i
; (108)

where the �(a;w0) are defined in (106). For each ê, we define

�wm(ê; e)(�) �
X
A

v(ê; e; �; a); (109)

where the v(ê; e; �; a)) are defined in (107). We now have to show that all constraints
Program 4b are satisfied. We can use the fact that �?(�; a;w0

jw; e) and the v
?(ê; e; �; a)

satisfy all constraints in Program 3.

We will start with the probability constraint (32). Substituting (106) into the left-hand side
of (32), we get: P

A�W0 �
?(�; a;w0

jw; e)P
A�W0 �

?(�; a;w0
jw; e)

= 1; (110)

which on the left-hand side clearly equals unity. Therefore (32) is satisfied. The promise-
keeping constraint (33) is identical to (108) and therefore also satisfied. We now move to
the obedience constraint (34). Substituting our definition (106) into what one would like
to show, namely (34), we need to establish:

X
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�
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jw; e)
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h
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X
E

p(e0jâ)w0(e0)

i
;

or, equivalently, by pulling out the common constant in the denominator:

X
W0

�
?
(�; a;w

0
jw; e)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)
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�

X
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�
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h
u(e+ � � â) + �

X
E

p(e0jâ)w0(e0)

i
: (111)

This is (24) in Program 3 and therefore by assumption satisfied. Next, substituting our
definitions (106) and (107) into what we would like to show, namely (35), and multiplying
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by
P

A�W0 �
?(�; a;w0

jw; e) on both sides we need to establish:

X
W0

�
?(�; a;w0

jw; e)

h
u(ê+ � � â) + �

X
E

p(e0jâ)w0(e0)

i
� v

?(ê; e; �; a); (112)

But this is (25) and therefore by assumption true. Finally, the constraints (36) are satisfied
because we defined the utility bounds in (109) accordingly. Therefore in Program 4b all
constraints are satisfied.

We now move to stage 4a. As mentioned earlier, for a given � , the contract we use does
not randomize over interim utilities. Since we have already determined which interim
utilities correspond to which transfer � , the only thing left to do is to assign probability
mass to different transfers and their associated interim utilities. We choose the contract
such that the probability of each transfer equals the probability of that transfer in contract
�
?(�). For each � , we have:

�(�; wm(e)(�); �wm(ê; e)(�)) �
X
A;W

�
?(�; a;w0

jw; e): (113)

We set the probability of all other combinations of transfer and interim utilities to zero.
Clearly, by choosing this contract we implement the same allocation over transfer, storage,
and promised utilities as �?(�) does. We still have to check whether the constraints (28)-
(30) of Program 4a are satisfied. The first constraint (28) is the probability constraint. We
have:

X
T

X
W(e;�)

�(�; wm(e); �wm(ê; e)) =
X
T

�(�; wm(e)(�); �wm(ê; e)(�)) (114)

=
X

T;A;W0

�
?(�; a;w0

jw; e):

since the right-hand side of (114) is just a sum over the left-hand side of (113). Since the
�
?(�; a;w0

jw; e) satisfy (22) we have, as required:

= 1: (115)
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For the promise-keeping constraint (29) we start on its left-hand side and use (106) and
(108) to get:

X
T

X
W(e;�)

�(�; wm(e); �wm(ê; e)) wm(e) =
X
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p(e0ja)w0(e0)

i

= w(e); (116)

where the last equality follows because the �?(�) satisfy (23). Finally, for the truth-telling
constraint (30), using (113) and starting on its left-hand side, given any ê 6= e we get:
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X
W(e;�)

�(�; wm(e); �wm(ê; e)) �wm(ê; e) =
X
T

�(�; wm(e)(�); �wm(ê; e)(�)) �wm(ê; e)(�)

=
X

T;A;W0

�
?
(�; a;w

0
jw; e) �wm(ê; e)(�)

=
X

T;A;W0

�
?(�; a;w0

jw; e)

"X
A

v(ê; e; �; a)

#

by (109),

=
X

T;A;W0

�
?
(�; a;w

0
jw; e)

" P
A
v
?(ê; e; �; a)P

A;W0 �
?(�; a;w0

jw; e)

#

because of (107). The �(�) will cancel, that is:

=
X
T

"X
A;W0

�
?(�; a;w0

jw; e)

" P
A
v
?(ê; e; �; a)P

A;W0 �
?(�; a;w0

jw; e)

##

=
X
T;A

v
?(ê; e; �; a)

� w(ê): (117)

The last inequality follows because the v
?(�) by assumption satisfy (26). Thus all con-

straints are satisfied. Therefore an allocation that is feasible in Program 3 can always be
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implemented in Program 4.

We will now show conversely that an allocation that is feasible in Program 4 is also feasi-
ble in Program 3. For a given vector of promised utilitiesw and a given true endowment,
assume that we have found contracts and utility bounds �?(�; wm; �wm), �?(a;w0)(wm; �wm),
and v

?(ê; e; �; a)(�; wm; �wm) that satisfy all constraints in Programs 4a and 4b. We use ? to
denote a solution to Program 4a and 4b and write the contracts and utility bounds for
Program 4a as a function of transfer and interim utilities to indicate to which transfer
and interim utility vector the contracts applies to. In this section, we drop the arguments
from the interim utilities in order to fit the equations on the page. We now have to find
contracts and utility bounds for Program 3 that implement the same allocation and that
satisfy constraints (22) to (26). For each � , a, w0, define as the obvious guess:

�(�; a;w
0
jw; e) �

X
W(e;�)

�
?
(�; wm; �wm) �

?
(a;w

0
)(wm; �wm): (118)

Basically, we integrate out the interim utilities. We guess the following utility bounds:

v(ê; e; �; a) �
X
W(e;�)

�
?(�; wm; �wm) v

?(ê; e; �; a): (119)

Clearly, the chosen contract implements the same allocation. We have to show that the
contract and the utility bounds satisfy the constraints (22)-(26) of Program 3.

We start with the probability constraint (22). Using definition (118), we get:

X
T;A;W0

�(�; a;w0
jw; e) =

X
T;A;W

X
W(e;�)

�
?(�; wm; �wm) �

?(a;w0)(wm; �wm):

Rewriting the order of summation:

=
X
T

X
W(e;�)

�
?
(�; wm; �wm)

"X
A;W0

�
?(a;w0)(wm; �wm)

#
:

Using the probability constraint (32) in Program 4b gives:

=
X
T

X
W(e;�)

�
?
(�; wm; �wm) = 1; (120)
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where, because of the probability constraint (28) in Program 4a, the left-hand side of (120)
equals unity, and thus (22) is satisfied. We now will show that the promise-keeping con-
straint (23) holds. Starting on its left-hand side and using definition (118) we get:

X
T;A;W0

�(�; a;w0
jw; e)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i

=
X

T;A;W0

X
W(e;�)

�
?(�; wm; �wm) �

?(a;w0)(wm; �wm)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i
:

Rearranging the order of summation gives:

=
X
T

X
W(e;�)

�
?(�; wm; �wm)

"X
A;W0

�
?(a;w0)(wm; �wm)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i#
:

Using the promise-keeping constraint (33) from Program 4b gives:

=
X
T

X
W(e;�)

�
?(�; wm; �wm) wm = w(e); (121)

where for the last step we used the promise-keeping constraint (29) from Program 4a.

Thus promise keeping is satisfied as well. Substituting definition (118) into both sides of
what we hope will be the obedience constraint (24), we get:

X
W0

X
W(e;�)

�
?(�; wm; �wm) �

?(a;w0)(wm; �wm)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i

�

X
W0

X
W(e;�)

�
?(�; wm; �wm) �

?(a;w0)(wm; �wm)

h
u(e+ � � â) + �

X
E

p(e0jâ)w0(e0)

i
:

(122)

Rearranging the order of summation yields:

X
W(e;�)

�
?(�; wm; �wm)

"X
W0

�
?(a;w0)(wm; �wm)

h
u(e+ � � a) + �

X
E

p(e0ja)w0(e0)

i#

�

X
W(e;�)

�
?(�; wm; �wm)

"X
W0

�
?(a;w0)(wm; �wm)

h
u(e+ � � â) + �

X
E

p(e0jâ)w0(e0)

i#
:

(123)
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This inequality holds because of (34) term by term before summing over W(e; �). Next,
substituting our definitions (118) and (119) into what we hope will be constraint (25), we
want to establish that:

X
W0

X
W(e;�)

�
?(�; wm; �wm) �

?(a;w0)(wm; �wm)

h
u(ê+ � � â) + �

X
E

p(e0jâ)w0(e0)

i

�

X
W(e;�)

�
?
(�; wm; �wm) v

?
(ê; e; �; a): (124)

Rearranging gives:

X
W(e;�)

�
?
(�; wm; �wm)

"X
W0

�
?
(a;w

0
)(wm; �wm)

h
u(ê+ � � â) + �

X
E

p(e
0
jâ)w

0
(e
0
)

i#

�

X
W(e;�)

�
?(�; wm; �wm) v

?(ê; e; �; a); (125)

which holds because by (35) it is assumed to hold pointwise in Program 4b. Finally,
starting from the left-hand side of the hoped for (26), we use definition (119) to get:

X
T;A

v(ê; e; �; a) =
X
T;A

X
W(e;�)

�
?
(�; wm; �wm) v

?
(ê; e; �; a):

Changing the order of summation gives:

=
X
T

X
W(e;�)

�
?(�; wm; �wm)

"X
A

v
?(ê; e; �; a)

#
;

because of the assumed (36) in Program 4b this is:

�

X
T

X
W(e;�)

�
?(�; wm; �wm) �wm(ê; e)

� w(ê); (126)

where the last inequality follows from (30). Thus all constraints are satisfied, which com-
pletes the proof. Since the feasible allocations are identical in both Programs, and the
objective function is the same, this also implies that Program 3 and 4 have the same solu-
tion. 2
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Corollary 1 Program 1, Program 2, Program 3, and Program 4 are all equivalent.

Proof: We showed in Appendix A2 and A3 that all allocations that are feasible in the
general mechanism are also feasible in Program 1 and Program 2. We also showed in A4
that Program 1 and Program 3 are equivalent, and Proposition 9 here in A5 establishes
that Program 3 and Program 4 are equivalent. Since the feasible allocations are identical
and the objective function is the same, all programs have the same solutions. 2
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