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Abstract

We develop general recursive methods to solve for optimal contracts in dynamic
principal-agent environments with hidden states and hidden actions. Starting from
a general mechanism with arbitrary communication, randomization, full history de-
pendence, and without restrictions on preferences or technology, we show that the
optimal contract can be implemented as a recursive direct mechanism. A curse of di-
mensionality which arises from the interaction of hidden income and hidden actions
can be overcome by introducing utility bounds for behavior off the equilibrium path.
Environments with multiple actions are implemented using multiple layers of such
off-path utility bounds.
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1 Introduction

The aim of this paper is to develop general recursive methods for computing optimal con-
tracts in dynamic principal-agent environments with hidden states and hidden actions.
A key feature of the environments that we consider is that the evolution of the state of
the economy is endogenous, since it depends on hidden actions taken by the agent. This
kind of intertemporal link is a natural feature of many private-information problems.
Well-known examples include environments with hidden income which may depend on
prior actions such as storage or investment, or environments with hidden search where
success may depend on search effort in multiple periods. Despite the ubiquity of such in-
teractions, most of the existing literature has avoided situations where hidden states and
hidden actions interact, mainly because of the computational difficulties posed by these
interactions.

We attack the problem by starting from a general planning problem which allows for
history dependence and unrestricted communication and does not impose restrictions
on preferences or technology. We show that this problem can be reduced to a recursive
version with direct mechanisms and vectors of utility promises as the state variable. In
this recursive formulation, however, a “curse of dimensionality” leads to an excessively
large number of incentive constraints, which renders numerical computation of optimal
allocations infeasible. We solve this difficulty by providing an equivalent alternative for-
mulation of the planning problem in which the planner can specify behavior off the equi-
librium path. This leads to a dramatic reduction in the number of constraints that need to
be imposed when computing the optimal contract. With the methods developed in this
paper, a wide range of dynamic mechanism design problems can be analyzed which were
previously considered to be intractable.

As our baseline environment, we concentrate on the case of a risk-averse agent who has
unobserved income shocks and can take unobserved actions such as storage or invest-
ment which influence future income realizations. There is a risk-neutral planner who
wants to provide optimal incentive-compatible insurance against the income shocks. The
design of optimal incentive-compatible mechanisms in environments with privately ob-
served income shocks has been studied by a number of previous authors, including
Townsend (1979), Green (1987), Thomas and Worrall (1990), Wang (1995), and Phelan
(1995). In such environments, the principal extracts information from the agents about
their income and uses this information to provide optimal incentive-compatible insur-
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ance. Much of the existing literature has concentrated on environments in which the
agent is not able to take unobserved actions that influence the probability distribution
over future income. The reason for this limitation is mainly technical; with hidden ac-
tions, the agent and the planner do not have common knowledge over probabilities of
future states, which renders standard methods of computing optimal mechanisms inap-
plicable.

Theoretical considerations suggest that the presence of hidden actions can have large ef-
fects on the constrained-optimal mechanism. To induce truthful reporting of income, the
planner needs control over the agent’s intertemporal rate of substitution. When hidden
actions are introduced, the planner has less control over rates of substitution, so providing
insurance becomes more difficult. Indeed, there are some special cases where the pres-
ence of hidden actions causes insurance to break down completely. Allen (1985) shows
that if an agent with hidden income shocks has unobserved access to a perfect credit
market (both borrowing and lending), the principal cannot offer any insurance beyond
the borrowing-lending solution. The reason is that any agent will choose the reporting
scheme that yields the highest net discounted transfer regardless of what the actual in-
come is.1 Cole and Kocherlakota (2001b) consider a related closed economy environment
in which the agent can only save, but not borrow. The hidden savings technology is as-
sumed to have the same return as a public storage technology to which the planner has
access. Remarkably, under additional assumptions, Cole and Kocherlakota obtain the
same result as Allen: the optimal solution is equivalent to unrestricted access to credit
markets. Ljungqvist and Sargent (2003) extend Cole and Kocherlakota to an open econ-
omy and establish the equivalence result with even fewer assumptions.

The methods developed in this paper can be used to compute optimal incentive-con-
strained mechanisms in more general environments with hidden actions in which self-
insurance via investment or storage is an imperfect substitute for saving in an outside
financial market, either because the return on storage is lower than the financial market
return, or because the return on investment is high but with uncertain and unobserved
returns. We show that in such environments, optimal information-constrained insurance
can improve over the borrowing-and-lending solution despite severe information prob-

1The issue of credit-market access is also analyzed in Fudenberg, Holmstrom, and Milgrom (1990), who
show that if principal and agent can access the credit market on equal terms, the optimal dynamic incentive
contracts can be implemented as a sequence of short-term contracts. In Abraham and Pavoni (2002), trade
is facilitated by giving the agent imperfect control over publicly observed output or over messages to the
planner.
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lems. As in Townsend (1982), the agent can be given incentives to correctly announce the
underlying state, since he is aware of his own intertemporal rate of substitution. Unob-
served investment subject to moral hazard with unobserved random returns does not un-
dercut this intuition. The optimal outcome reduces to pure borrowing and lending only
for a relatively narrow range of returns where the expected return on uncertain invest-
ment is roughly equal to (slightly above) the return in outside financial markets. Outside
this range, insurance in addition to borrowing and lending is possible due to variability
in the intertemporal rate of substitution.

Much of the existing literature on dynamic mechanism design has been restricted to en-
vironments where the curse of dimensionality that arises in our model is avoided from
the outset. The paper most closely related to ours is Fernandes and Phelan (2000). Fer-
nandes and Phelan develop recursive methods to deal with dynamic incentive problems
with Markov income links between the periods, and as we do, they use a vector of utility
promises as the state variable. There are three key differences between our paper and
the approach of Fernandes and Phelan. First, the recursive formulation has a different
structure. While in our setup utility promises are conditional on the realized income,
in Fernandes and Phelan the promises are conditional on the unobserved action in the
preceding period. Both methods should lead to the same results if the informational en-
vironment is the same, but they differ in computational efficiency. Even if income was
observed, our method would be preferable in environments with many possible actions,
but relatively few income values. Indeed, Kocherlakota (2004) points out that with a con-
tinuum of possible values for savings, the approach of Fernandes and Phelan is not com-
putationally practical. A second more fundamental difference is that Fernandes and Phe-
lan do not consider environments where both actions and states are unobservable to the
planner, which is the main source of complexity in our setup (they consider each problem
separately). Our methods are therefore applicable to a much wider range of problems,
including those where the planner (or larger community) knows virtually nothing, only
what has been transferred to the agent. Finally, our analysis is different from Fernan-
des and Phelan in that we allow for randomization and unrestricted communication, and
we show from first principles that various recursive formulations are equivalent to the
general formulation of the planning problem.

Another possible approach for the class of problems considered here is the recursive first-
order method used by Werning (2001) and Abraham and Pavoni (2002) to analyze a dy-
namic moral hazard problem with storage. Kocherlakota (2004) casts doubts on the wider
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applicability of first-order methods, because the agent’s decision problem is not necessar-
ily concave when there are complementarities between savings and other decision vari-
ables. Werning and Abraham and Pavoni consider a restricted setting in which output
is observed, the return on storage does not exceed the credit-market return, and saving
is not subject to random shocks. To the extent that first-order methods are justified in a
given application, they are computationally more efficient than our approach.2 However,
the range of possible applications is quite different. While the first-order approach (if
it is justified) works well with continuous choice variables, we can allow arbitrary util-
ity functions and technologies, discrete actions, and chunky investment decisions. Our
methods also generalize to much more complicated environments with multiple actions,
additional observable states, history-dependent technologies, and non-separable prefer-
ences.

In the following section, we provide an overview of the methods developed in this paper.
In Section 3 we introduce the baseline environment that underlies our theoretical analy-
sis and formulate a general planning problem with unrestricted communication and full
history dependence. In Section 4, we invoke and prove the revelation principle to re-
formulate the planning problem using direct message spaces and enforcing truth-telling
and obedience. We then provide a recursive formulation of this problem with a vector of
utility promises as the state variable (Program 1). In Section 5, we develop an alternative
formulation which allows the planner to specify utility bounds off the equilibrium path.
This method leads to a dramatic reduction in the number of incentive constraints that
need to be imposed when computing the optimal contract. In Section 6, we extend our
methods to an environment with multiple unobserved actions and additional observable
states, and show that additional actions can be handled by introducing multiple layers
of off-path utility bounds. In Section 7 we provide two computed examples that put our
methods to work. The first environment is a version of our baseline model with hidden
storage with a fixed return, which allows us to contrast our numerical findings to some of
the theoretical results pertaining to the same environment. We also compute a two-action
environment with hidden effort, training, and productivity. Section 8 concludes, and all
proofs are contained in the mathematical appendix.

2Abraham and Pavoni (2002) check a computed example to verify whether within numerical limits the
agent is following a maximizing strategy under the prescribed contract.
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2 Outline of Methods

As our baseline environment, we consider a dynamic mechanism design problem with
hidden income and hidden actions. The agent realizes an unobserved income shock at
the beginning of the period. Next, the planner may make a transfer to the agent, and at
the end of period the agent takes an action which influences the probability distribution
over future income realizations. We formulate a general planning problem of providing
optimal incentive-constrained insurance to the agent. Our ultimate aim is to derive a
formulation of the planning problem which can be solved numerically, using linear pro-
gramming techniques as in Phelan and Townsend (1991). In order to make the problem
tractable, we employ dynamic programming to convert the general planning problem to
problems which are recursive and of relatively low dimension. Dynamic programming
is applied at two different levels. First, building on Spear and Srivastava (1987), we use
utility promises as a state variable to gain a recursive formulation of the planning prob-
lem (Section 4). In addition, we apply similar techniques within the period as a method
for reducing the dimensionality of the resulting programming problem (Section 5).

A key feature of our approach is that we start from a general setup which allows ran-
domization, full history dependence, and unrestricted communication. We formulate a
general planning problem in the unrestricted setup (Section 3.2), and show from first prin-
ciples that our recursive formulations are equivalent to the original formulation. Rather
than imposing truth-telling and obedience from the outset, we prove a version of the rev-
elation principle for our environment (Proposition 2).3 Truth-telling and obedience are
thus derived as endogenous constraints capturing all the information problems inherent
in our setup.

After proving the revelation principle, the next step is to work towards a recursive for-
mulation of the planning problem. Given that in our model both income and actions are
hidden, so that in fact the planner does not observe anything, standard methods need to
be extended to be applicable to our environment. The main problem is that with hidden
income and actions a scalar utility promise is not a sufficient state variable, since agent
and planner do not have common knowledge over probabilities of current and future

3Initially, derivations of the revelation principle as in Harris and Townsend (1977), Harris and Townsend
(1981), Myerson (1979), and Myerson (1982) were for the most part static formulations. Here we are more
explicit about the deviation possibilities in dynamic games, as in Townsend (1988). Unlike Myerson (1986),
we do not focus on zero-probability events, but instead concentrate on within-period maximization opera-
tors using off-path utility bounds to summarize all possible deviation behavior.
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states. However, our underlying model environment is Markov in the sense that the un-
observed action only affects the probability of tomorrow’s income. Once that income is
realized, it completely describes the current state of affairs for the agent, apart from any
history dependence generated by the mechanism itself. We thus show that the planning
problem can still be formulated recursively by using a vector of income-specific utility
promises as the state variable (see Proposition 4 and the ensuing discussion).

It is a crucial if well-understood result that the equilibrium of a mechanism generates
utility realizations. That is, along the equilibrium path a utility vector is implicitly being
assigned, a scalar number for each possible income (though a function of the realized
history). If the planner were to take that vector of utility promises as given and reopti-
mize so as to potentially increase surplus, the planner could do no better and no worse
than under the original mechanism. Thus, equivalently, we can assign utility promises
explicitly and allow the planner to reoptimize at the beginning of each date. Using a vec-
tor of utility promises as the state variable introduces an additional complication, since
the set of feasible utility vectors is not known in advance. To this end, we show that the
set of feasible utility vectors can be computed recursively as well by applying a variant
the methods developed in Abreu, Pearce, and Stacchetti (1990) (Propositions 7 and 8 in
Appendix A.2).4

Starting from our recursive formulation, we discretize the state space to formulate a ver-
sion of the planning problem which can be solved using linear programming and value-
function iteration (Program 1 in Section 4.3 below). However, we now face the problem
that in this “standard” recursive formulation a “curse of dimensionality” arises, in the
sense that the number of constraints that need to be imposed when computing the op-
timal mechanism becomes very large. The problem is caused by the truth-telling con-
straints, which describe that reporting the true income at the beginning of the period is
optimal for the agent. In these constraints, the utility resulting from truthful reporting has
to be compared to all possible deviations. When both income and actions are unobserved,
the number of such deviations is large. A deviation consists of lying about income, com-
bined with an “action plan” which specifies which action the agent will take, given any
transfer and recommendation he may receive from the planner before taking the action.
The number of such action plans is equal to the number of possible actions taken to the
power of the product of the number of actions and the number of transfers (recall that

4See also Cole and Kocherlakota (2001a) in an application to dynamic games with hidden states and
actions.
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there are finite grids for all choice variables to allow linear programming). The number
of constraints therefore grows exponentially in the number of transfers and the number of
actions. Thus even for moderate sizes of these grids, the number of constraints becomes
too large to be handled by any computer.

To deal with this problem, we show that the number of constraints can be reduced dra-
matically by allowing the planner to specify outcomes off the equilibrium path (see Pro-
gram 2 in Section 5 below). The intuition is that we use a maximization operator which
makes it unnecessary to check all possible deviations, which can be done by imposing off-
path utility bounds. The advantage of specifying behavior off the equilibrium path is that
optimal behavior will be at least partly defined even if the agent misreports, so that not
all possible deviations need to be checked. This technique derives from Prescott (2003),
who uses the same approach in a static moral-hazard framework. The planner specifies
upper bounds to the utility an agent can get by lying and receiving a specific transfer
and recommendation afterwards. The truth-telling constraints can then be formulated in
a particularly simple way by summing over the utility bounds. Additional constraints
ensure that the utility bounds hold, i.e., the actual utility of deviating must not exceed the
utility bound regardless of what action the agent takes. The number of such constraints is
equal to the product of the number of transfers and the square of the number of actions.
The total number of constraints in Program 2 is approximately linear in the number trans-
fers and quadratic in the number of actions. In Proposition 5, we show that Program 1
and Program 2 are equivalent. With Program 2, the planning problem can be solved with
fine grids for all choice variables.5

Notice that the advantages of using utility bounds are similar to the advantages of using
a recursive formulation in the first place. One of the key advantages of a recursive for-
mulation with utility promises as a state variable is that only one-shot deviations need
to be considered. The agent knows that his future utility promise will be delivered, and
therefore does not need to consider deviations that extend over multiple periods. Using
off-path utility bounds applies a similar intuition to the incentive constraints within a pe-
riod. The agent knows that it will be in his interest to return to the equilibrium path later
in the period, which simplifies the incentive constraints in the beginning of the period.

A number of authors have considered environments where hidden savings interact with
additional unobserved actions. For example, in the optimal unemployment insurance an-

5We are still restricted to small grids for the state variable, however, since otherwise the number of
possible utility assignments becomes very large.
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alyzed by Werning (2001) both job-search effort and savings are unobservable, and Abra-
ham and Pavoni (2002) consider an environment with hidden work effort and hidden
savings. These environments are also characterized by additional observable states, such
as the outcome of the job search or production. In Section 6, we outline how our methods
can be naturally extended to richer environments with additional actions and observed
states. All our results carry over to the more general case. We show that multiple un-
observed actions can be handled at a relatively low computational cost by introducing
multiple layers of off-path utility bounds. At the beginning of the period, the truth-telling
constraints are implemented using a set of utility bounds that are conditional on the first
action only. These utility bounds, in turn, are themselves bounded by a second layer of
utility bounds, which are conditional on the second action.

3 The Model

In the following sections we develop a number of recursive formulations for a mechanism
design problem with hidden states and hidden actions. As the baseline case, we consider
an environment with a single unobserved action. When deriving the different recursive
formulations, we concentrate on the case of infinitely many periods with unobserved in-
come and actions in every period. With little change in notation, the formulations can be
adapted to models with finitely many periods, partially observable income and actions,
and multiple actions. In particular, in Section 6, we show how our methods can be gen-
eralized to an environment with an additional action and an observable state. Figures 1
and 2 (in Section 6 below) show the time line for the baseline environment and the ex-
tended double-action environment. In Section 6, we will see that multiple actions within
the period complicate the within-period incentive constraints, and we show how these
complications can be handled by introducing multiple layers of utility bounds. The in-
tertemporal aspect of the incentive problem, however, does not depend on the number of
actions. We therefore start out with a simpler environment in which there is only a single
unobserved action to concentrate on the intertemporal issues.

3.1 The Single Action Environment

In our baseline environment, there is an agent who is subject to income shocks, and
can take actions that affect the probability distribution over future income. The plan-
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Period t Period t + 1

et τt at u(et + τt − at) et+1

Figure 1: The Sequence of Events in Period t

ner, despite observing neither income nor actions, wants to provide optimal incentive-
compatible insurance to the agent. The timing of events is summarized in Figure 1. At
the beginning of each period the agent receives an income e from a finite set E. The in-
come cannot be observed by the planner. Then the planner gives a transfer τ from a finite
set T to the agent. At the end of the period, the agent takes an action a from a finite set
A. Again, this action is unobservable for the planner. In most examples below we will
concentrate on positive a and interpret that as storage or investment6. We can think of
approximating a continuum of possible values of actions A by a finite set, or alternatively
we can take indivisibilities seriously as in the investment literature. Similarly, the set of
realized incomes E is approximated by a finite set of Markov states.7 The agent consumes
the amount e + τ − a and enjoys period utility u(e + τ − a), where the utility function is
defined on E×T ×A. Our methods do not require any specific assumptions on the utility
function u(·), apart from it being real-valued. Indeed, we could separate consumption
e + τ from the action a and write U(e + τ, a), though we would lose the credit market or
investment interpretation.

The action a influences the probability distribution over income in the next period. Prob-
ability µ(e|a) denotes the probability of income e if the agent took action a in the previous
period. In the initial period the probability µ(e) of income e does not depend on prior
actions. For tractability, and consistent with the classic formulation of a moral-hazard
problem, we assume that all states occur with positive probability, regardless of the ac-
tion:

Assumption 1 The probability distribution over income e satisfies µ(e|a) > 0 for all e ∈ E, all

6Without any changes in the setup we could also allow for a to be negative, which can be interpreted as
borrowing.

7With non-stochastic saving, next period’s beginning-of-period “income” would be random income plus
the return on saving. If income has finite support, then for a given saving decision, certain income realiza-
tions would be impossible. This complicates but does not invalidate our methods—we could impose zero
consumption for detectable off-path behavior and continue as below.
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a ∈ A.

Otherwise, we place no restrictions on the investment technology. Note that since yes-
terday’s action affects probabilities over income only in the current period8, the income
realization completely describes the current environment as far as the agent is concerned.
Likewise, with time-separable utility, previous actions and incomes do not enter current
utility as a state variables (though we shall generalize below). Apart from physical trans-
actions, there is also communication taking place between the agent and the planner.
We do not place any prior restrictions on this communication, in order not to limit the
attainable outcomes. At a minimum, the agent has to be able send a signal about his
beginning-of-period income, and the planner has to be able to send a recommendation
for the investment or unobserved action.

The discount factor of the planner is denoted Q and β is the discount factor of the agent.
The planner is risk-neutral and minimizes the expected discounted transfer, while the
agent maximizes expected discounted utility. The objective function of the planner can
be given the usual small-economy interpretation, i.e. the planner has unrestricted access
to outside credit markets. In this case, the discount factor Q is given by Q = 1

1+r
, where r is

taken to be the outside credit-market interest rate. We assume that both discount factors
are less than one so that utility is finite and our problem is well defined.

Assumption 2 The discount factors Q and β of the planner and the agent satisfy 0 < Q < 1 and
0 < β < 1.

When there are only finitely many periods, we only require that both discount factors be
bigger than zero.

While we formulate the model in terms of a single agent, another powerful interpretation
is that there is a continuum of agents with mass equal to unity. In that case, the proba-
bility of an event represents the fractions in the population experiencing that event. Here
the planner is merely a programming device to compute an optimal allocation: when the
discounted surplus of the continuum of agents is zero, we have attained a Pareto opti-
mum.

8This assumption could be weakened as in Fernandes and Phelan (2000). If the action had effects over
multiple periods, additional state variables would have to be introduced to recover a recursive formulation.

10



3.2 The Planning Problem

We now want to formulate the Pareto problem of the planner maximizing surplus sub-
ject to providing reservation utility to the agent. Since the planner does not have any
information on income and actions of the agent, we need to take a stand on what kind
of communication is possible between the planner and the agent. In order not to impose
any constraints from the outset, we start with a general communication game with arbi-
trary message spaces and full history-dependence. At the beginning of each period the
agent realizes an income e. Then the agent sends a message or report m1 to the planner,
where m1 is in a finite set M1. Given the message, the planner assigns a transfer τ ∈ T ,
possibly at random. Next, the planner sends a message or recommendation m2 ∈ M2 to
the agent, and M2 is finite as well. Finally, the agent takes an action a ∈ A. In the direct
mechanism that we will introduce later, m1 will be a report on income e, while m2 will be
a recommendation for the action a.

We will use ht to denote the realized income and all choices of planner and agent within
period t:

ht ≡ {et, m1t, τt, m2t, at}.

We denote the space of all possible ht by Ht. The history up through time t will be denoted
by ht:

ht ≡ {h−1, h0, h1, . . . , ht}.

Here t = 0 is the initial date. The set of all possible histories up through time t is denoted
by H t and is thus given by:

H t ≡ H−1 × H0 × H1 × . . . × Ht.

At any time t, the agent knows the entire history up through time t − 1. On the other
hand, the planner never sees the true income or the true action. We will use st and st to
denote the part of the history known to the planner. We therefore have within period t

st ≡ {m1t, τt, m2t},

where the planner’s history of the game up through time t will be denoted by st, and the
set St of all histories up through time t is defined analogously to the set H t above. Since
the planner sees a subset of what the agent sees, the history of the planner is uniquely
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determined by the history of the agent. We will therefore write the history of the planner
as a function st(ht) of the history ht of the agent. There is no information present at the
beginning of time, and consequently we define h−1 ≡ s−1 ≡ ∅.

The choices of the planner are described by a pair of outcome functions π(τt|m1t, s
t−1) and

π(m2t|m1t, τt, s
t−1) which map the history up to the last period as known by the planner

and events (messages and transfers) that already occurred in the current period into a
probability distribution over transfer τt and a report m2t. The choices of the agent are
described by a strategy. A strategy consists of a function σ(m1t|et, h

t−1) which maps the
history up to the last period as known by the agent and the current income into a proba-
bility distribution over the first report m1t, and a function σ(at|et, m1t, τt, m2t, h

t−1) which
determines the action.

We use p(ht|π, σ) to denote the probability of history ht under a given outcome function π

and strategy σ. The probabilities over histories are defined recursively, given history ht−1

and action at−1(ht−1), by:

p(ht|π, σ) = p(ht−1|π, σ) µ(et|at−1(ht−1)) σ(m1t|et, h
t−1) π(τt|m1t, s

t−1(ht−1))

π(m2t|m1t, τt, s
t−1(ht−1)) σ(at|et, m1t, τt, m2t, h

t−1).

Also, p(ht|π, σ, hk) is the conditional probability of history ht given that history hk oc-
curred with k ≤ t, and conditional probabilities are defined analogously. In the initial
period, probabilities are given by:

p(h0|π, σ) = µ(e0) σ(m10|e0) π(τ0|m10)π(m20|m10, τ0) σ(a0|e0, m10, τ0, m20).

For a given outcome function π and strategy σ, the expected utility of the agent is:

U(π, σ) ≡
∞∑
t=0

βt

[∑
Ht

p(ht|π, σ)u(et + τt − at)

]
. (1)

The expression above represents the utility of the agent as of time zero. We will also
require that the agent use a maximizing strategy at all other nodes, even if they occur
with probability zero. The utility of the agent given that history hk has already been
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realized is given by:

U(π, σ|hk) ≡
∞∑

t=k+1

βt−1−k

[∑
Ht

p(ht|π, σ, hk)u(et + τt − at)

]
. (2)

We now define an optimal strategy σ for a given outcome function π as a strategy that
maximizes the utility of the agent at all nodes. The requirement that the strategy be
utility maximizing can be described by a set of inequality constraints. Specifically, for a
given outcome function π, for any alternative strategy σ̂, and any history hk, an optimal
strategy σ has to satisfy:

∀σ̂, hk : U(π, σ̂|hk) ≤ U(π, σ|hk). (3)

Inequality (3) thus imposes or describes optimization from any history hk onward.

We are now able to provide a formal definition of an optimal strategy:

Definition 1 Given an outcome function π, an optimal strategy σ is a strategy such that inequal-
ity (3) is satisfied for all k, all hk ∈ Hk, and all alternative strategies σ̂.

Of course, for hk = h−1 this condition includes the maximization of expected utility (1) at
time zero.

We imagine the planner as choosing an outcome function and a corresponding optimal
strategy subject to the requirement that the agent realize at least reservation utility, W0:

U(π, σ) ≥ W0. (4)

Definition 2 An equilibrium {π, σ} is an outcome function π together with a corresponding
optimal strategy σ such that (4) holds, i.e., the agent realizes at least his reservation utility. A
feasible allocation is a probability distribution over income, transfers and actions that is generated
by an equilibrium.

The set of equilibria is characterized by the promise-keeping constraint (4), by the opti-
mality condition (3), and of course a number of adding-up constraints that ensure that
both outcome function and strategy consist of probability measures. For brevity these
latter constraints are not written explicitly.
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The objective function of the planner is:

V (π, σ) ≡
∞∑
t=0

Qt

[∑
Ht

p(ht|π, σ)(−τt)

]
(5)

When there is a continuum of agents there is no aggregate uncertainty and (5) is the ac-
tual surplus of the planner, or equivalently, the surplus of the community as a whole. The
Pareto problem for a continuum of agents can be solved by setting that surplus to zero. In
the single-agent interpretation there is uncertainty about the realization of transfers, and
(5) is the expected surplus. In either case, the planner’s problem is to choose an equilib-
rium that maximizes (5). By construction, this equilibrium will be Pareto optimal. The
Pareto frontier can be traced out by varying reservation utility W0, and with a continuum
of households, by picking the W0 that generates zero surplus for the planner.

Definition 3 An optimal equilibrium is an equilibrium that solves the planner’s problem.

Proposition 1 There are reservation utilities W0 ∈ R such that an optimal equilibrium exists.

4 Deriving a Recursive Formulation

4.1 The Revelation Principle

Our ultimate aim is to find a computable, recursive formulation of the planning problem.
We begin by showing that without loss of generality we can restrict attention to a direct
mechanism where there is just one message space each for the agent and the planner.
The message space of the agent will be equal to the space of incomes E, and the agent
will be induced to tell the truth. The message space for the planner will be equal to the
space of actions A, and it will be in the interest of the agent to follow the recommended
action. Since we fix the message spaces and require that truth-telling and obedience be
optimal for the agent, instead of allowing any optimal strategy as before, it has to be
the case that the set of feasible allocations in this setup is no larger than in the general
setup with arbitrary message spaces. The purpose of this section is to show that the set of
feasible allocations is in fact identical. Therefore there is no loss of generality in restricting
attention to truth-telling and obedience from the outset.
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More formally, we consider the planning problem described above under the restriction
that M1 = E and M2 = A. We can then express the contemporary part of the history of the
planner as:

st ≡ {et, τt, at},
with history st up through time t defined as above. Notice that since we are considering
the history of the planner, et is the reported, not necessarily actual income, and at is the
recommended action, not necessarily the one actually taken. The planner only knows the
transfer and the messages. This will be different once we arrive at the mechanism with
truth-telling and obedience, where reported and actual income and recommended and
actual action always coincide.

As before, the planner chooses an outcome function consisting of probability distributions
over transfers and reports. For notational convenience, we express the outcome function
as the joint probability distribution over combinations of transfer and recommendation.
This is equivalent to choosing marginal probabilities as above. The planner therefore
chooses probabilities π(τt, at|et, s

t−1) that determine the transfer τt and the recommended
action at as a function of the reported income et and the history up to the last period st−1.

We now impose constraints on the outcome function π that ensure that the outcome func-
tion together with a specific strategy of the agent, namely truth-telling and obedience,
are an equilibrium. First, the outcome function has to define probability measures. We
require that π(τt, at|et, s

t−1) ≥ 0 for all transfers, actions, incomes and histories, and that:

∀et, s
t−1 :

∑
T,A

π(τt, at|et, s
t−1) = 1. (6)

Given an outcome function, we define probabilities p(st|π) over histories in the obvious
way, where the notation for σ is suppressed on the premise that the agent is honest and
obedient. Given these probabilities, as in (4), the outcome function has to deliver reser-
vation utility W0 to the agent, provided that the agent reports truthfully and takes the
recommended actions:

∞∑
t=0

βt

[∑
St

p(st|π)u(et + τt − at)

]
≥ W0. (7)

Finally, it has to be optimal for the agent to tell the truth and follow the recommended ac-
tion, so that (3) holds for the outcome function and the maximizing strategy σ of the agent,
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which is to be truthful and obedient. In particular, the utility of honesty and obedience
must weakly dominate the utility derived from any possible deviation strategy mapping
any realized history, which may be generated by possible earlier lies and disobedient
actions, into possible lies and alternative actions today, with plans for possible devia-
tions in the future. We write a possible deviation strategy δ, which is allowed to be fully
history-dependent, as a set of functions δe(ht−1, et) that determine the reported income as
a function of the actual history ht−1 and the true income et, and functions δa(ht−1, et, τt, at)
that determine the actual action as a function of the history ht−1, income et, transfer τt,
and recommended action at. Since the actual action may be different from the recommen-
dation, this deviation also changes the probability distribution over histories and states.
The agent takes this change into account, and the changed probabilities are denoted as
p(ht|π, δ), with the inclusion of other conditioning elements where appropriate. In partic-
ular, we require that the actions of the agent be optimal from any history of the planner sk

onward. It will also be useful to write down separate constraints for each possible income
ek+1 in period k + 1. Then for every possible deviation (δe, δa), any history sk, and any ek+1,
the outcome function has to satisfy:

∀δ, sk, ek+1 :
∞∑

t=k+1

βt

[∑
Ht

p(ht|π, δ, sk, ek+1)u(et + τt − δa(ht−1, et, τt, at))

]

≤
∞∑

t=k+1

βt

[∑
St

p(st|π, sk, ek+1)u(et + τt − at)

]
. (8)

Here p(ht|π, δ, sk, ek+1) on the left-hand side is the probability of actual history ht implied
by outcome function π and deviation δ conditional on the planner’s history sk and real-
ized income ek+1, and the p(st|π, sk, ek+1) on the right-hand side is the probability under
truth-telling and obedience as above, but now conditioned on sk and ek+1. Condition (8)
imposes or describes honesty and obedience on the equilibrium path, similar to (3).

It might seem at first sight that (8) is less restrictive than (3), because only a subset of pos-
sible deviations is considered. Specifically, deviations are non-random, and a constraint
is imposed only at every st node instead of every node hk of the agent’s history. However,
none of these limitations are restrictive. Allowing for randomized deviations would lead
to constraints which are linear combinations of the constraints already imposed. Impos-
ing (8) is therefore sufficient to ensure that the agent cannot gain from randomized devia-
tions. Also, notice that the conditioning history sk enters (8) only by affecting probabilities
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over future states st through the history-dependent outcome function π. These probabil-
ities are identical for all hk that coincide in the sk part once ek+1 is realized. The agent’s
private information on past incomes e and actions a affects the present only through the
probabilities over different future incomes. Imposing a separate constraint for each hk

therefore would not put additional restrictions on π.

Definition 4 An outcome function is an equilibrium outcome function under truth-telling and
obedience if it satisfies the constraints (6), (7) and (8) above. A feasible allocation in the truth-
telling mechanism is a probability distribution over income, transfers and actions that is implied
by an equilibrium outcome function.

Feasible allocations under truth-telling and obedience are a subset of the feasible alloca-
tions in the general setup, since (7) implies that (4) holds, and (8) implies that (3) holds.
In fact, we can show that the set of feasible allocations in the general and the restricted
setup are identical.

Proposition 2 (Revelation Principle) For any message spaces M1 and M2, any allocation that
is feasible in the general mechanism is also feasible in the truth-telling-and-obedience mechanism.

The proof (outlined in the appendix) takes the usual approach of mapping an equilib-
rium of the general setup into an equilibrium outcome function in the restricted setup.
Specifically, given an equilibrium (π, σ) in the general setup, the corresponding outcome
function in the restricted setup is gained by prescribing the outcomes on the equilibrium
path while integrating out all the message spaces:

π�(τt, at|et, s
t−1) ≡

∑
Ht−1(st−1),M1,M2

p(ht−1|st−1) σ(m1t|et, h
t−1) π(τt|m1t, s

t−1(ht−1))

π(m2t|m1t, τt, s
t−1(ht−1)) σ(at|et, m1t, τt, m2t, h

t−1).

The proof then proceeds by showing that the outcome function π� on the left-hand side
satisfies all the required constraints. The essence of the matter is that lying or deviating
under the new outcome function would be equivalent to using the optimizing strategy
function under the original outcome function, but evaluated at a counterfactual realiza-
tion. For example, an agent who has income e but reports ê will face the same probability
distribution over transfers and recommendations as an agent who under the original out-
come function behaved “as if” the income were ê. The agent can never gain this way,
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since σ is an optimal strategy, and it is therefore preferable to receive the transfers and
recommendations intended for income e instead of ê.

We are therefore justified in continuing with the restricted setup which imposes truth-
telling and obedience. The objective function of the planner is now:

V (π) ≡
∞∑
t=0

Qt

[∑
St

p(st|π)(−τt)

]
, (9)

and the original planning problem can be expressed as maximizing (9) subject to (6), (7),
and (8) above.

4.2 Utility Vectors as State Variables

We now have a representation of the planning problem that requires truth-telling and
obedience and yet does not constitute any loss of generality. However, we still allow fully
history-dependent outcome functions. The next step is to reduce the planning problem
to a recursive version with a vector of promised utilities as the state variable.

We wish to work towards a problem in which the planner has to deliver a vector of
promised utilities at the beginning of period k, with elements depending on income ek.
It will be useful to consider an auxiliary problem in which the planner has to deliver a
vector of reservation utilities w0 depending on income in the initial period. The original
planning problem can then be cast, as we shall see below, as choosing the vector of initial
utility assignments w0 which yields the highest expected surplus for the planner, given
the initial exogenous probability distribution over states e ∈ E at time t = 0.

In the auxiliary planning problem, we impose the same probability constraints (6) and in-
centive constraints (8) as before. However, instead of a single promise-keeping constraint
(7) there is now a separate promise-keeping constraint for each possible initial income.
For all e0, we require:

∀e0 :

∑
T,A

π(τ0, a0|w0, e0)

[
u(e0 + τ0 − a0) +

∞∑
t=1

βt
[ ∑

St

p(st|π, s0)u(et + τt − at)
]]

= w0(e0). (10)
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Here the vector w0 of income-specific utility promises w0(e0) is taken as given. Notice that
we write the outcome function π as a function of the vector of initial utility promises w0.
In period 0, there is no prior history, but in a subsequent period t the outcome function
also depends on the history up to period t− 1, so the outcome function would be written
as π(τt, at|w0, et, s

t−1).

In principle, specifying a separate utility promise for each income is more restrictive than
a requiring that a scalar utility promise be delivered in expected value across incomes.
However, the original planning problem can be recovered by introducing an initial stage
at which the initial utility vector is chosen by the planner.

Since the vector of promised utilities w0 will serve as our state variable, it will be impor-
tant to show that the set of all feasible utility vectors has nice properties.

Definition 5 The set W is given by all vectors w0 ∈ R#E that satisfy constraints (6), (8), and
(10) for some outcome function π(τt, at|et, s

t−1).

Proposition 3 The set W is nonempty and compact.

Now we consider the problem of a planner who has promised utility vector w0 ∈ W and
has received report e0 from the agent. In the auxiliary planning problem, the maximized
surplus of the planner is given by:

V (w0, e0) = max
π

∑
T,A

π(τ0, a0|w0, e0)

[
−τ0 +

∞∑
t=1

Qt
[∑

St

p(st|π, s0)(−τt)
]]

, (11)

where the maximization over current and future π is subject to constraints (6), (8), and
(10) above, for a given w0 ∈ W and e0 ∈ E.

We want to show that this problem has a recursive structure. To do this, we need to define
on-path future utilities that result from a given choice of π. For all sk−1, ek, let:

w(ek, s
k−1, π) =

∑
T,A

π(τk, ak|w0, ek, s
k−1)

[
u(ek + τk − ak) +

∞∑
t=k+1

βt−k
[∑

St

p(st|π, sk)u(et + τt − at)
]]

, (12)

and let w(sk−1, π) be the vector of these utilities over all ek. We can now show a version
of the principle of optimality for our environment:
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Proposition 4 For all w0 ∈ W and e0 ∈ E, and for any sk−1 and ek, there is an optimal
contract π� such that the remaining contract from sk−1 and ek onward is an optimal contract for
the auxiliary planning problem with e0 = ek and w0 = w(sk−1, π�).

Thus the planner is able to reoptimize the contract at any future node. For Proposition 4
to go through, it is essential that we chose a vector of utility promises as the state vari-
able, as opposed to the usual scalar utility promise which is realized in expected value
across states. If the planner reoptimized given a scalar utility promise at a given date,
the distribution of expected utilities across states might be different than in the original
contract. Such a reallocation of utilities would change the incentives for lying and dis-
obedience in the preceding period, so incentive-compatibility of the complete contract
would no longer be guaranteed. This problem is avoided by specifying a separate utility
promise for each possible income. Likewise, in implementing the utility promises it does
not matter whether the agent lied or was disobedient in the past, since the agent has to
report the realized income in either case, and once income is realized past actions have
no further effects.9

Given Proposition 4, we know that the maximized surplus of the planner can be written
as:

V (w0, e0) =
∑
A,T

π�(τ0, a0|w0, e0)

[
−τ0 + Q

∑
E

µ(e1|a0(s0))V (w(s0, π�), e1)

]
. (13)

In light of (13), we can cast the auxiliary planning problem as choosing transfers and ac-
tions in the initial period, and choosing continuation utilities from the set W, conditional
on history s0 = {e0, τ0, a0}.

We are now close to the recursive formulation of the planning problem that we are looking
for. We will drop the time subscripts from here on, and write the choices of the planner
as a function of the current state, namely the vector of promised utilities w that has to
be delivered in the current period and the reported income e. The choices are functions
π(τ, a|w, e) and w′(w, e, τ, a), where w′ is the vector of utilities promised from tomorrow
onward, which is restricted to lie in W. Assuming that the value function V is known
(it needs to be computed in practice), the auxiliary planning problem can be solved by
solving a static optimization problem for all vectors in W. An optimal contract for the
non-recursive auxiliary planning problem can be found by assembling the appropriate
solutions of the static problem.

9The state space would have to be extended further if the action affected outcomes for more than one
period into the future.
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We still need to determine which constraints need to be placed on the static choices
π(τ, a|w, e) and w′(w, e, τ, a) in order to guarantee that the implied contract satisfies the
probability measure constraints (6), the maximization constraint (8), and the promise
keeping constraint (10) above. In order to reproduce (6), we need to impose:

∑
T,A

π(τ, a|w, e) = 1. (14)

The promise-keeping constraint (10) will be satisfied if we impose:

∑
T,A

π(τ, a|w, e)

[
u(e + τ − a) + β

∑
E

µ(e′|a)w′(w, e, τ, a)(e′)

]
= w(e) (15)

where along the equilibrium path, honesty and obedience prevails in reports e and actions
a. Note that w′(w, e, τ, a)(e′) is the appropriate scalar utility promise for e′. The incentive
constraints are imposed in two parts. We first require that the agent cannot gain by fol-
lowing another action strategy δa(τ, a), assuming that the reported income e was correct.
Note that e enters the utility function as the actual value and as the conditioning element
in π as the reported value.

∀δa :

∑
T,A

π(τ, a|w, e)

[
u(e + τ − δa(τ, a)) + β

∑
E

µ(e′|δa(τ, a))w′(w, e, τ, a)(e′)

]
≤ w(e). (16)

A similar constraint on disobedience is also required if the initial report was e, but the
true state was ê, i.e., false reporting. Note that ê enters the utility function as the actual
value but e is the conditioning element in π on the left-hand side, and w(ê) is the on-path
realized utility under honesty and obedience at ê.

∀ê �= e, δa :

∑
T,A

π(τ, a|w, e)

[
u(ê + τ − δa(τ, a)) + β

∑
E

µ(e′|δa(τ, a))w′(w, e, τ, a)(e′)

]
≤ w(ê). (17)

Conditions (16) and (17) impose a sequence of period-by-period incentive constraints on
the implied full contract. The constraints rule out that the agent can gain from disobe-
dience or misreporting in any period, given that he goes back to truth-telling and obedi-
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ence from the next period on. Equations (16) and (17) therefore imply that (8) holds for
one-shot deviations. We still have to show that (16) and (17) are sufficient to prevent de-
viations in multiple periods, but the argument follows as in Phelan and Townsend (1991).
That is, for a finite number of deviations, we can show that the original constraints are
satisfied by backward induction. The agent clearly does not gain in the last period when
he deviates, since this is just a one-time deviation and by (16) and (17) is not optimal. Go-
ing back one period, the agent has merely worsened his future expected utility by lying
or being disobedient in the last period. Since one-shot deviations do not improve utility,
the agent cannot make up for this. Going on this way, we can show by induction that any
finite number of deviations does not improve utility. Lastly, consider an infinite number
of deviations. Let us assume that there is a deviation that gives a gain of ε. Since β < 1,
there is a period T such that at most ε/2 utils can be gained from period T on. This implies
that at least ε/2 utils have to be gained until period T . But this contradicts our result that
there cannot be any gain from deviations with a finite horizon.

Thus we are justified to pose the auxiliary planning problem as solving:

V (w, e) = max
π≥0,w′

∑
A,T

π(τ, a|w, e)

[
−τ + Q

∑
E

µ(e′|a)V (w′(w, e, τ, a), e′)

]
(18)

by choice of π and w′, subject to constraints (14) to (17) above. Program 1 below is a
version of this problem with a discrete grid for promised utilities as an approximation. We
have assumed that the function V (w, e) is known. In practice, V (w, e) can be computed
with standard dynamic programming techniques. Specifically, the right-hand side of (18)
defines an operator T that maps functions V (w, e) into TV (w, e). It is easy to show, as in
Phelan and Townsend (1991), that T maps bounded continuous functions into bounded
continuous functions, and that T is a contraction. It then follows that T has a unique fixed
point, and the fixed point can be computed by iterating on the operator T .

The preceding discussion was based on the assumption that the set W of feasible util-
ity vectors is known in advance. In practice, W is not known and needs to be com-
puted alongside the value function V (w, e). W can be computed with the dynamic-
programming methods described in detail in Abreu, Pearce, and Stacchetti (1990). An
outline of the method is given in Appendix A.2. The appendix also discusses issues
related to the discretization of the set of feasible utility vectors which is necessary for
numerical implementation of our algorithm.
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Finally, the entire discussion is easily specialized to the case of a finite horizon T . VT

would be the value function for period T , VT−1 for period T − 1, WT−1 the set of feasible
promised utilities at time T − 1, and so on.

4.3 The Discretized Version

For numerical implementation of the recursive formulation of the planning problem, we
require finite grids for all choice variables in order to employ linear programming tech-
niques. #E is the number of grid points for income, #T is the number of possible transfers,
and #A is the number of actions. The vector of promised utilities is also assumed to be
in a finite set W, and the number of possible choices is #W. To stay in the linear pro-
gramming framework, we let the planner choose a probability distribution over vectors
of utility promises, instead of choosing a specific utility vector.10 That is, τ , a, and w′

are chosen jointly under π. Notice that while the finite grids for income, transfer, and
action are features of the physical setup of the model, the finite grid for utility promises
is merely a numerical approximation of the continuous set in our theoretical formulation
(see Appendix A.2 for a discussion of this issue).

With finite grids, the optimization problem Program 1 of a planner who has promised
vector w and has received report e is:

V (w, e) = max
π≥0

∑
T,A,W′

π(τ, a,w′|w, e)
[
−τ + Q

∑
E

µ(e′|a)V (w′, e′)
]

(19)

subject to the constraints (20) to (23) below. The first constraint is that the π(·) sum to one
to form a probability measure, as in (14):

∑
T,A,W′

π(τ, a,w′|w, e) = 1. (20)

Second, the contract has to deliver the utility that was promised for state e, as in (15):

∑
T,A,W′

π(τ, a,w′|w, e)
[
u(e + τ − a) + β

∑
E

µ(e′|a)w′(e′)
]

= w(e). (21)

10This imposes no loss of generality. If the contract puts weight on more than one utility vector, the
corresponding mixed contract is a feasible choice for the planner who wants to implement the implied
expected utility vector. The planner therefore cannot do better by choosing lotteries. It is also not possible
to do worse, since the planner is free to place all weight on just one utility vector.
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Third, the agent needs incentives to be obedient. Corresponding to (16), for each transfer
τ and recommended action a, the agent has to prefer to take action a over any other action
â �= a:

∀τ, a, â �= a :
∑
W′

π(τ, a,w′|w, e)
[
u(e + τ − â) + β

∑
E

µ(e′|â)w′(e′)
]

≤
∑
W′

π(τ, a,w′|w, e)
[
u(e + τ − a) + β

∑
E

µ(e′|a)w′(e′)
]
. (22)

Finally, the agent needs incentives to tell the truth, so that no agent with income ê �= e

would find this branch attractive. Under the promised utility vector w, agents at ê should
get w(ê). Thus, an agent who actually has income ê but says e nevertheless must not get
more utility than was promised for state ê. This has to be the case regardless whether the
agent follows the recommendations for the action or not. Thus, for all states ê �= e and all
functions δ : T × A → A mapping transfer τ and recommended action a into an action
δ(τ, a) actually taken, we require as in (17):

∀ê �= e, δ : ∑
T,A,W′

π(τ, a,w′|w, e)
[
u(ê + τ − δ(τ, a)) + β

∑
E

µ(e′|δ(τ, a))w′(e′)
]
≤ w(ê). (23)

Note that similar constraints are written for the ê problem, so that agents with ê receive
w(ê) from a constraint like (21). For a given vector of utility promises, there are #E Pro-
gram 1’s to solve.

Program 1 allows us to numerically solve the auxiliary planning problem for a given vec-
tor of utility promises by using linear programming and iteration on the value function.
To recover the original planning problem with a scalar utility promise W0, we let the plan-
ner offer a lottery π(w|W0) over utility vectors w before the first period starts and before
e is known. The problem of the planner at this initial stage is:

V (W0) = max
π≥0

∑
W

π(w|W0)
[∑

E
µ(e)V (e,w)

]
(24)

subject to a probability and a promise-keeping constraint:

∑
W

π(w|W0) = 1. (25)
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∑
W

π(w|W0)
[∑

E
µ(e) w(e)

]
≥ W0. (26)

The same methods can be used for computing models with finitely many periods. With
finitely many periods, the value functions carry time subscripts. The last period T would
be computed first by solving Program 1 with all terms involving utility promises omitted.
The computed value function VT (w, e) for period T is then an input in the computation of
the value function for period T − 1. Moving backward in time, the value function for the
initial period is computed last.

An important practical limitation of the approach outlined thus far is that the number of
truth-telling constraints in Program 1 is very large, which makes computation practically
infeasible even for problem with relatively small grids. For each state ê there is a con-
straint for each function δ : T × A → A, and there are (#A)(#T×#A) such functions. Unless
the grids for τ and a are rather sparse, memory problems make the computation of this
program infeasible. The total number of variables in this formulation, the number of ob-
jects under π(·), is #T×#A×#W. There is one probability constraint (20) and one promise-
keeping constraint (21). The number of obedience constraints (22) is #T × #A × (#A − 1),
and the number of truth-telling constraints (23) is (#E − 1) × (#A)(#T×#A). Thus, the num-
ber of constraints grows exponentially with the product of the grid sizes for actions and
transfers.

As an example, consider a program with two states e, ten transfers τ , two actions a, and
ten utility vectors w′. With only ten points, the grids for transfers and utility promises
are rather sparse. Still, for a given vector of utility promises w and reported state e Pro-
gram 1 is a linear program with 200 variables and 1,048,598 constraints. If we increase
the number of possible actions a to ten, the number of truth-telling constraints alone is
10100. Clearly, such programs will not be computable now or any time in the future. It is
especially harmful that the grid size for the transfer causes computational problems, as
it does here because of the dimensionality of δ(τ, a). One can imagine economic environ-
ments in which there are only a small number of options for actions available, but it is
much harder to come up with a reason why the planner should be restricted to a small
set of transfers. In the next section we present an alternative formulation, equivalent to
the one developed here, that can be used for computing solutions in environments with
many transfers and many actions.
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5 Off-Path Utility Bounds and Efficient Computation

In this section we develop an alternative recursive formulation of the planning problem
which is equivalent to Program 1, but requires a much smaller number of constraints. The
key method for reducing the number of constraints in the program is to allow the planner
to specify utility promises off the equilibrium path, as proposed by Prescott (2003).

The choice variables in the new formulation include utility bounds v(·) that specify the
maximum utility (that is, current utility plus expected future utility) that an agent can
get when lying about income and receiving a certain recommendation. Specifically, for
a given reported income e, v(ê, e, τ, a) is an upper bound for the utility of an agent who
actually has income ê �= e, reported income e nevertheless, and received transfer τ and
recommendation a. An intermediate step would be to assign exact utilities for ê, e, τ, a, in
which case we have something like the threat keeping in Fernandes and Phelan (2000).
But as in Prescott (2003), we do better by only imposing utility bounds. This utility bound
is already weighted by the probability of receiving transfer τ and recommendation a.
Thus, in order to compute the total expected utility that can be achieved by reporting e

when the true state is ê, we simply have to sum the v(ê, e, τ, a) over all possible transfers
τ and recommendations a. The truth-telling constraint is then that the utility of saying e

when being at state ê is no larger than the utility promise w(ê) for ê.

The planner’s optimization problem Program 2 given report e and promised utility vector
w is:

V (w, e) = max
π≥0,v

∑
T,A,W′

π(τ, a,w′|w, e)
[
−τ + Q

∑
E

µ(e′|a)V (w′, e′)
]

(27)

subject to the probability measure constraint (20), the promise-keeping constraint (21),
the obedience constraints (22), and the constraints (28) and (29) below. The first new
constraint requires that the utility bounds have to be observed. An agent who reported
state e, is in fact at state ê, received transfer τ , and got the recommendation a, cannot
receive more utility than v(ê, e, τ, a), where again v(ê, e, τ, a) incorporates the probabilities
of transfer τ and recommendation a. For each state ê �= e, transfer τ , recommendation a,
and all possible actions â we require:

∀ê �= e, τ, a, â :
∑
W′

π(τ, a,w′|w, e)
[
u(ê + τ − â) + β

∑
E

µ(e′|â)w′(e′)
]
≤ v(ê, e, τ, a).

(28)
Also, the truth-telling constraints are that the utility of an agent who is at state ê but
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reports e cannot be larger than the utility promise for ê. For each ê �= e we require:

∀ê �= e :
∑
T,A

v(ê, e, τ, a) ≤ w(ê). (29)

Thus, the new constraints (28) and (29) in Program 2 replace the truth-telling constraints
(23) in Program 1. The number of variables in this problem is #T×#A×#W under π(·) plus
(#E−1)×#T ×#A, where the latter terms reflect the utility bounds v(·) that are now choice
variables. There is one probability constraint (20) and one promise-keeping constraint
(21). The number of obedience constraints (22) is #T × #A × (#A − 1). There are (#E −
1)×#T × (#A)2 constraints (28) to implement the utility bounds, and (#E−1) truth-telling
constraints (29). Notice that the number of constraints does not increase exponentially in
any of the grid sizes. The number of constraints is approximately quadratic in #A and
approximately linear in all other grid sizes. This makes it possible to compute models
with a large number of actions. In Program 2, our example with two states e, ten transfers
τ , two actions a, and ten utility vectors w′ is a linear program with 220 variables and 63
constraints. The program is still computable if we increase the number of actions a to ten.
In that case, Program 2 has 1100 variables and 1903 constraints, which is sufficiently small
to be easily solved on a personal computer.

We now want to show that Program 2 is equivalent to Program 1. In both programs, the
planner chooses lotteries over transfer, action, and promised utilities. Even though in
Program 2 the planner also chooses utility bounds, in both programs the planner’s utility
depends only on the lotteries, and not on the bounds. The objective functions are identi-
cal. In order to demonstrate that the two programs are equivalent, it is therefore sufficient
to show that the set of feasible lotteries is identical. We therefore have to compare the set
of constraints in the two programs.

Proposition 5 Program 1 and Program 2 are equivalent.

The proof (contained in the Appendix) consists of showing that constraints (28) and (29)
in Program 2 place the same restrictions on the outcome function π(·) as the constraints
(23) of Program 1. The probability constraint (20), the promise-keeping constraint (21),
and the obedience constraints (22) are imposed in both programs. Therefore one only
needs to show that for any π(·) that satisfies the incentive constraints (23) in Program 1,
one can find utility bounds such that the same outcome function satisfies (28) and (29) in
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Program 2 (and vice versa). Since the objective function is identical, it then follows that
the programs are equivalent.

In Program 2, the number of constraints gets large if both the grids for transfer τ and
action a are made very fine. In practice, this may lead to memory problems when com-
puting. Further reductions in the number of constraints are possible in a formulation in
which the transfer and the recommendation are assigned at two different stages. Here
we subdivide the period completely and assign interim utility promises as an additional
state variable. This procedure yields even smaller programs. The reduction comes at the
expense of an increase in the number of programs that needs to be computed. The pro-
grams for both stages are described in Doepke and Townsend (2002). The main remaining
limitation of our approach is that we are restricted to relatively small spaces for the state
e (for example, the examples in Section 7 have two possible states). If there are many
states, the number of feasible utility vectors in W′ becomes large, which increases both
the number of constraints and the number of programs that need to be computed.

Even in the relatively efficient Program 2, the linear programs generally have the feature
that the number of constraints far exceeds the number of variables, which implies that a
large number of constraints are not binding at the optimum. One may wonder whether
there are situations where it can be determined beforehand which constraints are not go-
ing to be binding, which would lead to further computational simplifications. In some
applications such simplification may indeed be possible. For example, Thomas and Wor-
rall (1990) show in an environment similar to ours, but without lotteries and without
hidden actions, that the truth-telling constraint is binding for the high-income agent, but
not for the low-income agent. Under sufficiently restrictive assumptions on utility and
technology, similar results could be obtained for our environment.

In terms of reducing the size of the linear programs, however, it would be far more valu-
able to show that it is sufficient to check only “local” deviations in terms of the action
(since the number of constraints is asymptotically linear in the number of incomes, but
quadratic in the number of actions). Here we find that under standard assumptions (in
particular, concave utility) there is only limited scope for further improvements. To see
why, consider an environment with two incomes (high and low), concave utility, and an
investment technology that is linear in storage (i.e., µ(e|a) is linear in a). Consistent with
the storage interpretation, A is assumed to be a finite set of non-negative values that in-
cludes zero storage. Finally, assume that it can be shown in advance that the optimal
contract will assign zero storage to the agent in every state, as is typically the case of the
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return on storage is lower that the planner’s credit market return. Will it be possible to
implement the optimal contract by checking only the “local” constraints, i.e., constraints
that involve deviations to the lowest positive storage level? As far as the obedience con-
straints (22) are concerned, the answer is yes. In (22), the marginal gain from deviating to
an â > 0 (higher future utility) is constant regardless of â (since µ(e|â) is linear), whereas
the marginal loss from deviating (lower current utility) is increasing in â (since the util-
ity function is concave). If (22) is satisfied for a given â�, it is therefore also satisfied for
all â > â�, so checking the local constraint indeed suffices to implement the obedience
constraints.

The same argument does not work, however, for the truth-telling constraints. One might
think that the constraints (28) once again only need to be imposed for the lowest possible
â. However, the problem is that we do not know a priori which â maximizes the left-
hand side of (28), since (28) describes behavior off the equilibrium path. The optimal
storage level of the equilibrium path will generally not be equal to zero. Consider a rich
agent who lies and pretends to be poor. Under the optimal contract, relative to telling the
truth such an agent would receive a higher transfer today, but lower future utility. Thus,
current marginal utility would decrease, while future marginal utility would increase,
which makes storage particularly attractive. In other words, the setup is such that a joint
deviation in report and action is more attractive than a single deviation in the report. This
complementarity between the two types of deviation makes it impossible to simplify the
program by considering only local constraints when implementing truth-telling.

While this may seem like an unfortunate outcome, this result underlines the strengths
of our methods relative to the first-order approach. By construction, in the first-order
approach only local deviations are checked (the difference being that the size of the de-
viation is infinitesimal). If, however, there are complementarities between different types
of deviations, the local constraints are not sufficient, and the first-order approach is not
applicable. Kocherlakota (2004) points out that such complementarities generically arise
in a number of environments, and the discussion above shows that the same concern is
important in the hidden-storage world considered here. Our methods provide a tractable
approach for solving this class of problems.
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6 Multiple Actions and Observable States

Up to this point, we have restricted our analysis to an environment with a single state
(the beginning-of-period income) and a single action (the storage decision at the end of
the period). In many applications, there are multiple states realized throughout the pe-
riod, some of which may be observed, and there are multiple actions. Consider, for ex-
ample, the canonical unemployment insurance problem with hidden savings, versions of
which are analyzed by Werning (2001) and Abraham and Pavoni (2002). There are two
states, namely beginning-of-period assets and the outcome of the job search. It is typi-
cally assumed that the employment status is observable, while assets are not. There are
also two unobserved actions, namely the job-search intensity and the savings or storage
decision. In this section, we show how our methods can be naturally extended to richer
environments of this kind. As we will see, additional observable states do not add any
substantial complications. Multiple unobserved actions can be handled by introducing
multiple layers of utility bounds, each corresponding to a different action. In effect, at the
the first stage the planner makes “promises on promises.”

Figure 2 sums up the timing of events within the period. In the extended model, there is
still a beginning-of-period state e. After e is realized, the agent takes an unobserved action
a1. Next, an observable state y which depends on e and a1 through probability function
f (y|e, a1) is realized. In the unemployment insurance model, a1 is typically interpreted as
search effort, and y is the outcome of the search (success or failure). After y is realized,
the timing is as in our original setup. The planner hands out a transfer τ , the agent takes
a second unobserved action a2 (which can be interpreted as storage), and finally tomor-
row’s state e′ is determined by the probability function g(e′|e, a1, y, τ, a2), which has full
support over tomorrow’s state space E. Notice that we allow income to be autocorrelated
and to depend on all variables realized within the period. The period utility function is
more general as well and takes the form u(e, a1, y, τ, a2). As before, we assume that every
income and every state always occurs with positive probability:

Assumption 3 The probability distribution over the state e satisfies g(e′|e, a1, y, τ, a2) > 0 for
all e ∈ E, a1 ∈ A1, y ∈ Y , τ ∈ T , and a2 ∈ A2. The probability distribution over the state y

satisfies f (y|e, a1) > 0 for all e ∈ E and a1 ∈ A1.

In this more general environment, versions of Proposition 2 (revelation principle) and
Propositions 3 and 4 (recursive mechanism) can be proven, with little change in nota-
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Period t Period t + 1

et a1t yt τt a2t u(et, a1t, yt, τt, a2t) et+1

Figure 2: The Sequence of Events in Period t

tion, by following the same steps as in the single-action environment. We therefore limit
ourselves to outlining the main steps here, without going through every detail. After in-
troducing message spaces corresponding to the state and the two actions, in the double-
action environment the history at time t can be expressed at:

ht ≡ {et, m1t, m2t, a1t, yt, τt, m3t, a2t},

where m1t is a message sent by the agent which serves as a report of the state e, whereas
m2t and m3t are messages sent by the planner which serve as a recommendations for the
two actions. The part of the history observable by the planner is given by:

st ≡ {m1t, m2t, yt, τt, m3t}.

The histories ht and st up to time t, strategies σ and outcome functions π, and probabilities
over histories are defined as in Section 3. The definitions of optimal strategies, equilibria,
and optimal equilibria (Definitions 1 to 3 above) also carry over to the more general case.
As in Section 4, the next step is then to define a more restricted direct mechanism with
truth-telling and obedience. In the restricted mechanism, message spaces are equal to the
spaces that each report corresponds to, so that we have M1 = E, M2 = A1, and M3 = A2.
The contemporary part of the history of the planner is then given by:

st ≡ {et, a1t, yt, τt, a2t},

where et is interpreted as a report, and a1t and a2t are recommendations. A mecha-
nism with truth-telling and obedience can be written as π(a1t, yt, τt, a2t|et, s

t−1), and as
in Section 4 this mechanism has to satisfy a probability constraint, a promise-keeping
constraint, and a set of incentive constraints. Since yt is drawn by nature, there is an ad-
ditional set of constraints which requires that the choices of the planner are consistent
with the probability function f (y|e, a1). The revelation principle is proven, as in Proposi-
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tion 2, by taking an arbitrary pair of an outcome function and a corresponding equilib-
rium strategy, and “translating” this pair into a corresponding outcome function π� under
truth-telling and obedience. In our case, this translation is given by:

π�(a1t, yt, τt, a2t|et, s
t−1) ≡

∑
Ht−1(st−1),M1,M2,M3

p(ht−1|st−1) σ(m1t|et, h
t−1)π(m2t|m1t, s

t−1)

σ(a1t|et, m1t, m2t, h
t−1) f (yt|et, a1t) π(τt|m1t, m2t, yt, s

t−1)

π(m3t|m1t, m2t, yt, τt, s
t−1) σ(a2t|et, m1t, m2t, a1t, yt, τt, m3t, h

t−1).

Since the pair (π, σ) is an equilibrium, it can be shown that π� satisfies all required con-
straints as in Proposition 2, so that using the direct mechanism does not impose any loss
of generality.

The next step towards a computable version of the planning problem is to show that the
problem is recursive in a vector of state-contingent utility promises (Proposition 4). Here
the arguments made for the single-action environment in Section 4 carry over almost di-
rectly. To be more specific, in our baseline environment a vector of state-contingent utility
promises is a sufficient state variable because past actions influence future outcomes only
through their impact on the future state e′. Once e′ is realized, past actions do not have
further effects. This is the key property that we exploited in the proof of Proposition 4 to
show that it is sufficient to condition utility promises on e′. The extended two-action en-
vironment adds some new complications within the period, but it preserves the property
that events in any given period affect future outcomes only through their influence on
the next period’s state e′. Consequently, the same arguments that we made in the proof
of Proposition 4 also pertain to the extended environment.

So far, we have argued that the same steps that led to Program 1 in the single-action envi-
ronment carry over with little changes to our extended double-action environment. The
final step of our earlier analysis, leading to Program 2, dealt with the “curse of dimension-
ality” in terms of the within-period incentive constraints. In particular, we showed how
off-path utility bounds could be used to dramatically reduce the number of incentive con-
straints. While we will see that an extension of this method applies to the double-action
environment, it is here where the two environments are the most different. We there-
fore discuss the last step of the analysis in detail. We start be writing down the planning
problem arising in this setup in the standard form, akin to Program 1. The optimization
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problem Program 3 given report e and promised utility vector w is:

V (w, e) = max
π≥0

∑
A1,Y,T,A2,W′

π(a1, y, τ, a2,w
′|w, e)

[
−τ + Q

∑
E

g(e′|e, a1, y, τ, a2)V (w′, e′)
]

(30)
subject to the constraints below. The first constraint is the probability measure constraint:

∑
A1,Y,T,A2,W′

π(a1, y, τ, a2,w
′|w, e) = 1. (31)

The second constraint is the promise-keeping constraint:

∑
A1,Y,T,A2,W′

π(a1, y, τ, a2,w
′|w, e)

[
u(e, a1, y, τ, a2) + β

∑
E

g(e′|e, a1, y, τ, a2)w′(e′)
]

= w(e).

(32)
Third, the contract has to obey the true probability distribution f (y|e, a1):

∀ā1 ∈ A1, ȳ ∈ Y :

∑
T,A2,W′ π(ā1, ȳ, τ, a2,w

′|w, e)∑
Y,T,A2,W′ π(ā1, y, τ, a2,w′|w, e)

= f (ȳ|e, ā1). (33)

Fourth, we have to ensure that the agent prefers to take the correct first action a1, condi-
tional on the report being true:

∀a1, â1 �= a1, δ2 :
∑

Y,T,A2,W′
π(a1, y, τ, a2,w

′|w, e)
f (y|e, â1)
f (y|e, a1)[

u(e, â1, y, τ, δ2(a1, y, τ, a2)) + β
∑

E
g(e′|e, â1, y, τ, δ2(a1, y, τ, a2))w′(e′)

]
≤

∑
Y,T,A2,W′

π(a1, y, τ, a2,w
′|w, e)

[
u(e, a1, y, τ, a2) + β

∑
E

g(e′|e, a1, y, τ, a2)w′(e′)
]
. (34)

Notice that we have to allow arbitrary deviations in the second action at this stage, since
we do not know which second action is optimal if the first action is not the correct one.

Fifth, conditional on having been truthful and obedient up to that point, the agent needs

33



incentives to take the correct second action a2:

∀a1, y, τ, a2, â2 �= a2 :∑
W′

π(a1, y, τ, a2,w
′|w, e)

[
u(e, a1, y, τ, â2) + β

∑
E

g(e′|e, a1, y, τ, â2)w′(e′)
]

≤
∑
W′

π(a1, y, τ, a2,w
′|w, e)

[
u(e, a1, y, τ, a2) + β

∑
E

g(e′|e, a1, y, τ, a2)w′(e′)
]
. (35)

Sixth, we need to provide incentives for making the correct report, regardless of the action
strategies δ1 and δ2 to be followed later:

∀ê �= e, δ1, δ2 : ∑
A1,Y,T,A2,W′

π(a1, y, τ, a2,w
′|w, e)

f (y|ê, δ1(a1))
f (y|e, a1)[

u(ê, δ1(a1), y, τ, δ2(a1, y, τ, a2)) + β
∑

E
g(e′|ê, δ(a1), y, τ, δ2(a1, y, τ, a2))w′(e′)

]
≤ w(ê). (36)

The number of variables in this problem is #A1 × #Y × #T × #A2 × #W. The number
of constraints is prohibitively high even for small grid sizes: There are #E × #A#A1

1 ×
#A#A1×#Y ×#T×#A2

2 truth telling constraints (36) alone. The key problem is that there are two
arbitrary deviation functions δ1 and δ2 at different stages.

In the single-action environment we were able to substantially reduce the number of con-
straints by introducing off-path utility bounds, and the same approach is going to be
useful here. We will show, however, that to do deal with two actions, two layers of util-
ity bounds are required, one corresponding to each action. The first layer, expressed as
v1(ê, a1), provides an upper bound on the utility of an agent who is at state ê but reports
e instead, and subsequently receives the recommendation a1 for the first action. These
bounds will be used to simplify the truth-telling constraints as in Program 2 above. The
second layer can be written as v2(ê, a1, â1, y, τ, a2) and enables us to implement the obedi-
ence constraints. Here v2(ê, a1, â1, y, τ, a2) bounds the utility of an agent at true state ê who
reports e, receives recommendation a1, does â1, reaches state y, receives transfer τ , and
gets the second recommendation a2.

Using these bounds, the planner’s optimization problem Program 4 given report e and
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promised utility vector w is:

V (w, e) = max
π≥0,v1,v2

∑
A1,Y,T,A2,W′

π(a1, y, τ, a2,w
′|w, e)

[
−τ + Q

∑
E

g(e′|e, a1, y, τ, a2)V (w′, e′)
]

(37)
subject to the probability measure constraint (31), the promise-keeping constraint (32),
the consistency constraints (33), the obedience constraint for the second action (35), and
the new constraints (38)-(41) below. The first new constraint is the obedience constraint
for the first action:

∀a1, â1 �= a1 :
∑

Y,T,A2

v2(e, a1, â1, y, τ, a2)

≤
∑

Y,T,A2,W′
π(a1, y, τ, a2,w

′|w, e)
[
u(e, a1, y, τ, a2) + β

∑
E

g(e′|e, a1, y, τ, a2)w′(e′)
]
. (38)

The second constraint provides incentives for making the correct report:

∀ê �= e :
∑
A1

v1(ê, a1) ≤ w(ê). (39)

Next, the first-layer utility bounds actually have to bound utility, regardless of the first
action â1 actually undertaken:

∀ê �= e, a1, â1 :
∑

Y,T,A2

v2(ê, a1, â1, y, τ, a2) ≤ v1(ê, a1). (40)

The second-layer bounds have to be true bounds as well:

∀ê, a1, â1, y, τ, a2, â2 : ∑
W′

π(a1, y, τ, a2,w
′|w, e)

f (y|ê, â1)
f (y|e, a1)[

u(ê, â1, y, τ, â2) + β
∑

E
g(e′|ê, â1, y, τ, â2)w′(e′)

]
≤ v2(ê, a1, â1, y, τ, a2). (41)

The reason why two layers of utility bounds are required is that once the agent lies about
the state (ê �= e) and we are therefore off the equilibrium path, we do not know which
first action â1 is optimal for a given recommendation a1. If we did, it would be possible in
(39) (the only constraint where the v1 bounds are used) to sum over the corresponding v2

bounds directly. Instead, we have to write the constraint (39) using v1 bounds, and then
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impose a separate set of constraints (40) and (41) to make sure that the v1 are true bounds
on utility for any first action â1.

Proposition 6 Program 3 and Program 4 are equivalent.

The proof (contained in the Appendix) follows the same approach as the proof of Propo-
sition 5.

In Program 4 the number of constraints is asymptotically proportional to the number of
possible actions (at each stage) squared, whereas in the version without utility bounds
the number of constraints grows exponentially with the number of actions. The number
of variables in Program 4 is [#A1 × #Y × #T × #A2 × #W] + [(#E − 1) × #A1] + [#E ×
#A2

1 ×#Y ×#T ×#A2], where the last two terms correspond to the utility bounds v1 and v2.
There is one probability constraint (31) and one promise-keeping constraint (32). There
are #A1 × #Y consistency constraints (33), #A1 × #Y × #T × #A2 × (#A2 − 1) obedience
constraints for the second action (35), #A1 × (#A1 − 1) obedience constraints for the first
action (38), #E − 1 truth telling constraints (39), (#E − 1) × #A2

1 constraints to implement
the first-level utility bounds (40), and #E ×#A2

1 ×#Y ×#T ×#A2
2 constraints to implement

the second-level utility bounds (41) (including the cases ê = e and â1 = a1).

Program 4 is small enough to be computable on a standard PC for moderate grid sizes. If
memory is an issue, the size of the programs could be further decreased by subdividing
each period in two different parts. Also, the complexity of the resulting programs is
sensitive to the precise timing of events in the period. We have assumed that the agent’s
second action a2 takes place after the planner hands out the transfer τ , which implies that
the utility bounds v2 have to be conditional on τ . If in a given application the timing
were such that the planner provides a transfer at the end of the period, the utility bounds
would no longer depend on τ , which substantially reduces the size of the programs. The
approach presented here could be further generalized by introducing yet more actions or
states, where each action would result in a new layer of utility bounds.
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7 Computed Examples

7.1 Hidden Storage

In this section, we use our methods to compute optimal allocations in a variant of the
single-action environment underlying Programs 1 and 2, where the hidden action is de-
signed to resemble storage at a fixed return. The planner has access to an outside credit
market at a fixed interest rate, and wants to provide insurance to an agent who has hid-
den income shocks. The agent can hide part of the income, and invest in a technology
which raises the expected income in the following period.

Our interest in this application stems from its relation to the existing literature: there
are two special cases of this environment for which the optimal insurance mechanism
can be derived analytically. Allen (1985) shows that if the hidden technology amounts
to unobserved access to a perfect credit market at the same interest rate that the planner
has access to, the principal cannot offer any insurance beyond self-insurance in the credit
market. Cole and Kocherlakota (2001b) and Ljungqvist and Sargent (2003) extend this
result to the case where the agent can only store the income, but not borrow. As long as
the return on storage is identical to the planner’s credit market return, the optimal out-
come is once again equivalent to credit market access for the agent. If the results of Allen
(1985), Cole and Kocherlakota (2001b), and Ljungqvist and Sargent (2003) held more gen-
erally, the implementation of optimal policies would be straightforward: the planner only
would have to provide credit market access to the agent, which is much simpler than the
history-contingent transfer schemes that arise in environments without hidden actions.
However, all of the literature relies on the assumption that planner and agent face the
same return. Our recursive methods make it possible to compute outcomes for a variety
of returns of the hidden storage technology, both below and above the credit-market in-
terest rate. We find in these computations that once the hidden storage technology has a
return sufficiently different from the credit market interest rate, the equivalence of opti-
mal insurance and credit market access breaks down. This is true regardless of whether
the return on storage is above or below the interest rate; it is only required that the devi-
ation be sufficiently large.

We illustrate this result in an environment with three periods. Planner and agent have
the same discount factor β = Q = 1.05−1, corresponding to a risk-free interest rate of
five percent for the planner. The agent has logarithmic utility. In each period there are
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two possible incomes e (2.1 or 3.1) and three storage levels a (0, 0.3, or 0.6). In periods
one and two, the planner can use a grid of 50 transfers τ (from -1.4 to 1.4). In period
three outcomes are easier to compute since there are no further actions utility promises,
which allows us to use a grid with 4,000 grid points for transfers. In each period, the
utility grids have 100 elements per income, so that (given two incomes) there are 10,000
possible utility vectors. In the initial period, each income occurs with probability 0.5. In
all other periods, the probability distribution over incomes depends on the storage level
in the previous period. If storage is zero, the high income occurs with probability 0.025.
The probability of the high income increases linearly with storage. The expected return
on storage R determines how fast the probability of the high income increases.11 For
example, for R = 1, an increase in storage of 0.1 results in an increase in the expected
income of 0.1. Since the difference between the two incomes equals one (3.1 − 2.1), with
R = 1 increasing the storage level a by 0.1 results in an increase in the probability of the
high income of 3.1 by 0.1, and an equal decrease in the probability of the low income of
2.1.

We computed optimal policy functions for a variety of returns R as a function of the
(scalar) initial utility promise W0. Program 2 was used for all computations.12 Figure
3 shows the policy functions for R = 1.1 as a function of the initial utility promise W0

and the realized income in the first period (low or high, represented by solid and dashed
lines in the graph). In all graphs a vertical line marks the initial utility level at which
the expected discounted surplus of the planner is zero. At R = 1.1, the net expected
return on storage is 10 percent, which exceeds the credit market interest rate of 5 percent.

11Notice that our storage technology is non-standard in the sense that it is stochastic. Storage increases
the probability of a high income realization within a given distribution, as opposed to shifting the entire
distribution upwards. However, comparing our computations to existing theoretical results indicates that
this choice does not have a major effect on the results (see below).

12The computations were carried out on a PC with an Intel P4 2.1 GHz CPU, 512 MB of RAM, and
running Windows XP. The matrices were set up in MATLAB, and the optimization steps were carried out
using the ILOG CPLEX 7.5 linear program solver. In the last period (period 3), each linear program had
4,000 variables and 3 constraints. Each of these programs took about 0.1 seconds to compute. In period 2,
the programs had 34,800 variables and 753 constraints, resulting in a computing time of 0.25 seconds per
program, and in period 1 the programs had 200,100 variables and 753 constraints, with a computation time
of 1.8 seconds per program. The variation in the number of variables between periods one and two stems
from differences in the number of feasible utility vectors. At each stage, a separate program needs to be
computed for each income and each feasible utility vector. The actual number of programs to be computed
varies, since some infeasible utility vectors are disregarded from the outset. On average, 1500 programs had
to be computed for period 3, and 3000 programs for periods 1 and 2. The total computation time averaged
3 minutes for period 3, 45 minutes for period 2, and 280 minutes for period 1. In all computed solutions to
the initial planning problem (24), the surplus of the planner V (W0) is a strictly decreasing function of the
utility promise W0, implying that the promise-keeping constraint (26) is always binding.
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Consequently, the storage technology is used to the maximum of 0.6 regardless of the
realized income. The planner uses transfers and utility promises to provide incentive-
compatible insurance to the agent with the low income realization. The transfer for the
low income is higher than for the high income, and at zero expected surplus high-income
agents today are taxed, while low-income agents receive a transfer. The difference in
consumption between low- and high-income agents is only about 0.3, even though the
income differs by 1. In other words, the planner is able to insure about seventy percent
the income risk in the first period. In order to ensure incentive compatibility (i.e., induce
the high-income agent to report truthfully), the planner promises a schedule of higher
future utility from tomorrow onward to agents with the high income.

The optimal insurance scheme for returns R below 1.05 (the market rate) is similar to
the outcome for R = 1.1, with the key difference that the private storage technology is
not used. Interestingly, the planner still does not recommend the use of private storage
if the return on storage is slightly above the credit market return. Even though using
storage would increase the expected income, there would also be added uncertainty since
the storage technology is stochastic. Using private storage pays off only if the return is
sufficiently far above the credit-market return to compensate for the added risk.

Figure 4 shows how the expected utility of the agent varies with the return on storage,
subject to the requirement that the discounted surplus of the planner be zero. The utility
of the agent is shown for values of R between 0.6 and 1.1 (below R = 0.6, utilities no
longer change with R). The top line is the utility the agent gets under full information,
that is, when both income and storage are observable by the planner. In this case the
planner provides full insurance, and consumption and utility promises are independent
of income. The utility of the agent does not vary with the return on storage as long
as R ≤ 1.05. This is not surprising, since 1.05 is the risk-free interest rate. As long as
the return on storage does not exceed the credit-market return, storage is never used.
When R exceeds 1.05, the Pareto frontier expands and the utility of the agent increases
dramatically. In effect, when R > 1.05 an arbitrage opportunity arises which is only
limited by the upper bound on storage.

The lower line shows the utility of the agent under autarky. When the return on storage is
sufficiently high (above about 0.91, still a relatively dismal return) the agent uses storage
to self-insure against the income shocks. Since under autarky storage is the only insurance
for the agent, utility increases with the return on storage.
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The solid line shows the utility of the agent under optimal incentive-constrained insur-
ance with hidden income and hidden actions. Once the return on storage exceeds some
critical value (about 0.7), the utility of the agent decreases with the return on storage, in-
stead of increasing as it does under autarky. As long as the planner never recommends
positive private storage, a higher return on storage has no positive effects. On the con-
trary, it becomes harder to satisfy the obedience constraints which require that the agent
does not prefer a positive storage level when the planner recommends zero storage. Rais-
ing the return on storage shrinks the set of feasible allocations, and the utility of the agent
falls. Hence, the properties of the storage technology influence the optimal insurance
contract even if private storage is never used in equilibrium.

The dotted line represents the utility of an agent who has access to a perfect credit market
under the same conditions as the planner. The agent can also use the private storage
technology in addition to borrowing and lending in the credit market. This utility is
computed by solving for the optimal saving and borrowing decisions explicitly, i.e., no
finite grids on consumption or assets are imposed. As long as the return on storage does
not exceed the credit market interest rate, once again zero storage is optimal, and the
utility is independent of the return on storage. When the return on storage exceeds the
interest rate, the agent may gain by using the storage technology in addition to smoothing
income in the credit market.

We know that, in principle, the information-constrained solution should be no worse that
what the agent can achieve independently when given access to an outside credit mar-
ket, since any borrowing-and-lending plan is incentive compatible. In other words, the
optimal insurance scheme can reproduce anything that can be achieved in the credit mar-
ket, so that the credit-market solution should provide a lower bound on the information-
constrained solution. In Figure 4, the optimal constrained solution does dip below the
credit-market solution for a small range of R, which can be attributed to the finite grids
used to compute the information-constrained regime. Even so, the figure provides a mea-
sure of the accuracy of our code, as the difference between the solution and the lower
bound is very small.

Thus, within the bounds of approximation our computations bear out the prediction by
Cole and Kocherlakota (2001b) that the credit-market utility should equal the optimal-
insurance utility at the point where the interest rate and return on storage are equal, de-
spite the fact that our storage technology is stochastic. For returns sufficiently below
R = 1.05, optimal information-constrained insurance does significantly better than credit
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market access. For R < 1.05, the utility of the agent increases with R under both regimes,
but the information-constrained solution once again dominates for sufficiently high re-
turns.

In sum, Figure 4 shows that if the return on private storage is sufficiently different from
the outside interest rate, the agent does significantly better with optimal insurance than
with borrowing and lending. What matters here is the ability of the agent to circumvent
the insurance scheme offered by the planner. The planner provides incentives for truth-
ful reporting by exploiting differences in the intertemporal rate of substitution between
agents with high and low income realizations. When the return on storage is close to
the credit-market interest rate, agents have the possibility of smoothing income on their
own, so that differences in rates of substitution are small. Consequently, little additional
insurance can be offered. When there is a large difference between return on storage and
interest rate, however, it is costly for agents to deviate from the recommended storage
scheme (no storage at low returns, maximum storage at high returns). The planner can
use the resulting differences in rates of substitution to provide incentives for truthful re-
porting, which results in more insurance.13

The optimal allocations in this application are computed subject to two types of incen-
tive constraints: obedience constraints force the agent to take the right action, and truth-
telling constraints ensure that the agent reports the actual income. What happens if only
one type of constraint is introduced? If we remove the truth-telling constraints (i.e., we
assume that the actual income can be observed by the planner) and assume that the re-
turn on storage does not exceed the credit-market return, the situation is simple: The
planner can provide full insurance against income shocks. In this case the obedience con-
straints are not binding since the optimal storage level is zero, which is also what the
agent prefers if income shocks are fully insured. Conversely, if only the obedience con-
straints are removed, as if storage could be observed, full insurance cannot be achieved.
The outcome is essentially the same as in the situation where storage is hidden, but the
storage technology has zero gross return. The utilities are as in Figure 4 for R = 0.6.

13The exact gain from optimal insurance depends on the return on storage. At low returns, the quanti-
tative gains relative to credit-market access are small. The maximum utility differential is equivalent to a
permanent increase in consumption of slightly above one-twentieth of one percent. If the return to storage
is so low that the storage technology is never used, self-insurance in a credit market achieves 95 percent
of the utility gain of optimal insurance relative to autarky. The relative gains from optimal insurance are
higher when storage is actually used. At the maximum return of R = 1.1, the credit-market solution yields
only 65 percent of the utility gain relative to autarky that can be attained by optimal insurance. These num-
bers, of course, are particular to our example. Generally, the absolute gains achieved by optimal insurance
increase with the amount of risk inherent in income realizations and the agent’s degree of risk aversion.
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e = 0, a1 = 0 e = 0, a1 = 1 e = 1, a1 = 0 e = 1, a1 = 1
P (y = 1) 0.9 0.8 0.9 0.1
P (y = 10) 0.1 0.2 0.1 0.9

Table 1: Probability Distribution over Output y

7.2 Unobserved Effort with Hidden Productivity and Training

We now present another example to put our methods for computing the double-action en-
vironment in Section 6 to work. Since in this environment there are a number of different
types of incentive constraints, we chose an extension of a relatively standard unobserved-
effort economy to demonstrate how these different constraints interact. The state e in this
economy will be labeled as “productivity.” The first action a1 is interpreted as effort, and
a1 together with the state e jointly determine the probability distribution over output y.
The second unobserved action a2 is interpreted as “training” or “skill acquisition,” and
determines the probability distribution over future productivity e′.

The agent enters the period with a productivity state e that can be either high or low
(normalized to e = 1 and e = 0). The first unobserved action (“effort”) a1 can also be either
high or low (a1 = 1 or a1 = 0). Next, (observable) income y is realized. Once again just two
values are possible, y = 10 or y = 1. Table 1 shows the probability distribution over output
as a function of e and a1. Notice that when effort a1 is low, the probability distribution over
output does not depend on productivity e. A productive agent, on the other hand, gets
a much larger increase in the probability of getting high output by exerting high effort
than an unproductive agent. After output is realized, the planner hands out a transfer
τ . The second unobserved action a2 (“training”) takes place at the end of the period, and
can take the two values a2 = 1 and a2 = 0. For a worker who does the training (a2 = 1), the
probability of being productive in the next period (e′ = 1) is 0.9, while without training
(a2 = 0) the probability is only 0.1. The utility function of the agent is given by:

u(c, a1, a2) =
√

c − α1a1 − α2a2,

where α1 = 1 and α2 = 0.2. Thus, preferences are separable in consumption and the two
effort choices (this simplifies interpreting the results; our computational method does not
require separability assumptions).

In summary, we are considering a fairly standard unobserved effort model, which is en-
riched by the second unobserved action “training” and the unobserved state “produc-
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tivity.”14 To map out how the optimal solution of the planning problem is affected by
the different incentive problems, we computed solutions under different assumptions on
observability, ranging from full information to the case where e, a1, and a2 are all unob-
served. For simplicity, a two-period model was computed, and we used Program 4 for
all computations (while omitting some of the incentive constraints when some or all of
e, a1, and a2 are observable).15 In the first period, each productivity state occurs with
probability 0.5.

As a reference, Figure 5 shows the optimal policy functions in the first period under full
information (e, a1, and a2 all observed) as a function of the reservation W0 utility of the
agent. Displayed are the two action choices in the first period as a function of the state
(productive or unproductive), consumption as a function of output (separate graphs for
each productivity state), and the utility promises conditional on tomorrow’s productivity
(again, there are separate graphs for each productivity state in the first period). Given the
effect of the effort a1 on output y, it turns out to be optimal to require high effort only
from productive agents. Since utility is concave in consumption, consumption is not con-
ditional on type or output. At first sight, it may seem surprising that the future utility
promise is lower for the high state than the low state. The reason is that in the second
period consumption is independent of type or output once again, whereas only the pro-
ductive agent will be required to put in high effort, which explains the lower promise for
productive agents.

We now start to move towards the information-constrained solution. Figure 6 shows the
outcome if the state e (productivity) is unobserved in both periods, but the two actions
continue to be public information. The planner now needs to provide incentives to the
agents to reveal the true state. As the upper-left panel shows, for most of the range of
initial utility promises only the productive agent is required to exert high effort in the
first period. Since effort is costly in terms of utility, the productive agent is compensated
for this effort with higher consumption, lower required training, and higher future utility
promises. Notice, however, that consumption does not depend on realized output: since

14Other interpretations of this environment are possible, such as two-stage crop production where the
first action is “harvest” and the second action is “sowing” for the next season.

15We used the same technology as described in Footnote 12. The grid for the transfer τ had 50 values in
both periods, and the grid for utility promises had 30 elements per state in income (resulting in 900 possible
combinations, not all of which where feasible). 1800 programs had to be solved in period 2. In the version
with e, a1, and a2 all unobserved, each linear program had 200 variables and 12 constraints and took on
average 0.007 seconds to compute. In the first (initial) period, each program had 99602 variables and 3607
constraints, which resulted in an average computation time of 10.78 seconds on average. The programs
where some or all of e, a1, and a2 are observed have fewer constraints and compute correspondingly faster.
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effort is observable, the planner does not need to provide incentives to exert high effort
once the productivity state e has been revealed.

Over most of the range of initial utility promises, unlike in the full-information solution
the utility promises for period 2 turn out not to depend on the future state e′. In the full
information solution, productive agents receive lower future utility promises, but now
the planner needs to provide incentives for truthful reporting of the state. In particular,
the key difficulty is to prevent a productive agent from claiming to be unproductive, since
in the first-best solution productive agents receive lower utility. Even when the state e′

is hidden, it is possible to deliver more utility to the unproductive agent in the second
period, namely by prescribing high effort even when low productivity is reported, and
then punishing high output. This hurts the productive agent more, as the productive
agent is more likely to experience high output. Assigning high effort thus allows the
planner to distinguish productive from unproductive agents, because then the outcome
y′ provides a precise signal on the realization of e′. However, using this scheme turns out
to be efficient only for low utility promises W0 (the range for which the utility promise for
low e′ exceeds the promise for high e′), and the scheme is only used in the second period.

In the next version, displayed in Figure 7, both e and a1 are unobserved, while a2 is public
information. The planner now needs to provide incentives to put in effort a1, which is
mainly accomplished by making consumption depend on y. Only productive agents are
affected by this change, since unproductive agents are not asked to put in high effort.
Second-period consumption (not displayed) now depends on the output realization in the
first period as well. A second key difference to Figure 6 is that the planner is no longer able
to promise higher utility for the low state, even for low reservation utilities. The reason is
that in Figure 6 the two productivity types could be distinguished only by assigning high
effort a1 = 1 to both productive and unproductive agents in the second period. This is no
longer incentive compatible once effort a1 is unobserved as well. Thus, the combination
of the two sets of incentive constraints forces the planner to offer identical utility promises
to productive and unproductive agents, which is not the case if either set of constraints is
imposed in isolation.

To see how unobservability of training a2 affects the results, it is best to start with a version
where only a2 is unobserved, while e and a1 are public information. The results are dis-
played in Figure 8. To provide incentives for training, the planner has to promise higher
utility for the high future productivity state. Thus, in the region where positive training
is assigned, the ranking of the utility promises across the two states is reversed relative
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to the full-information solution. Finally, Figure 9 shows the fully incentive-constrained
version where e, a1, and a2 are all unobserved. In the range where the recommended a2 is
positive, the incentive constraints compel the planner to offer more utility promise for the
future productive state. Even if the recommended a2 is zero, the planner has to offer at
least as much utility at the productive state compared to the unproductive state to induce
truthful reporting of e (as in Figure 7). Finally, consumption depends on y if a1 = 1 is
recommended, so that high effort is incentive compatible.

To summarize, the results demonstrate that the features of the optimal contract are quite
sensitive to the assumptions on exactly what can be observed by the planner. In Figure 6,
for example, the planner wants to provide incentives for reporting the true endowment
e. For low utility promises, this is accomplished by imposing high effort on the agent, be-
cause then the outcome y provides a precise signal on the realization of e. The insurance
scheme that deals with the hidden state e therefore relies on the action a1 being controlled
by the planner. If a1 is hidden as well, it not incentive-compatible for the agent to put
in high effort given that high output is punished subsequently, so the original insurance
scheme is undercut. We conjecture that similar outcomes will arise in a variety of envi-
ronments with multiple hidden actions and states.

8 Conclusions

In this paper we show how general dynamic mechanism design problems with hidden
states and hidden actions can be formulated in a way that is suitable for computation. Our
methods can be applied to wide variety of models, including applications with income
shocks or productivity shocks, and actions that could be interpreted as storage, invest-
ment, work effort, search effort, or training. We start from a general planning problem
which allows arbitrary message spaces, lotteries, and history dependence. The planning
problem is reduced to a recursive version which imposes truth-telling and obedience and
uses vectors of utility promises as state variables. We also develop methods to reduce
the number of constraints that need to be imposed when computing the optimal contract.
The main idea of these methods is to allow the planner to put structure on outcomes off
the equilibrium path. In particular, the planner chooses bounds that limit the utility the
agent can get on certain off-equilibrium branches that are reached if only if the agent mis-
reports the state at the beginning of the period. If there are multiple hidden actions within
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the period, we show that multiple layers of such utility bounds can be used to implement
the optimal contract efficiently.

In an application to a model with hidden storage, we use our methods to examine how
the optimal insurance contract varies with the return of the private storage technology.
The only existing results for this environment concern special cases where the return on
storage is equal to the credit-market return faced by the planner (see Allen 1985, Cole
and Kocherlakota 2001b, and Ljungqvist and Sargent 2003). We observe that in certain
cases the utility of the agent can actually decrease as the return of the private technology
rises. This occurs when the return on public storage is sufficiently high so that in the con-
strained optimum only public storage is used. If now the return to the private technology
rises, it becomes more difficult for the planner to provide incentives for truth-telling and
obedience, and consequently less insurance is possible. Thus the effect of a rising return
of private investment on the agent’s utility in the constrained optimum is exactly the
opposite of the effect that prevails under autarky, where a higher return raises utility.

In an application to a hidden effort model with productivity and training, we show how
the optimal contract varies depending on which events and actions can be observed by
the planner. In particular, we demonstrate how the different types of incentive constraints
interact, in the sense that the optimal outcome with multiple unobserved states and ac-
tions looks very different from a combination of the outcomes with each state or action
unobserved individually. The intuition for this finding is that insurance for a single in-
formation problem often works by making outcomes contingent on an observed state
or action, as in the standard unobserved effort model where incentives are provided by
making consumption depend on output, even though the agent is risk averse. If there are
multiple unobserved states and actions, the ability of the planner to impose such contin-
gencies is undercut, and the insurance cannot be provided in the standard form.

A Mathematical Appendix

A.1 Proofs for all Propositions

Proposition 1 There are reservation utilities W0 ∈ R such that an optimal equilibrium exists.

Proof of Proposition 1 We need to show that for some W0 the set of equilibria is nonempty
and compact, and that the objective function is continuous. To see that the set of equilibria
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is nonempty, notice that the planner can assign a zero transfer in all periods, and always
send the same message. If the strategy of the agent is to choose the actions that are op-
timal under autarky, clearly all constraints are trivially satisfied for the corresponding
initial utility W0. The set of all contracts that satisfy the probability-measure constraints
is compact in the product topology since π and σ are probability measures on finite sup-
port. Since only equalities and weak inequalities are involved, it can be shown that the
constraints (3) and (4) define a closed subset of this set. Since closed subsets of com-
pact sets are compact, the set of all feasible contracts is compact. We still need to show
that the objective function of the planner is continuous. Notice that the product topol-
ogy corresponds to pointwise convergence, i.e., we need to show that for a sequence of
contracts that converges pointwise, the surplus of the planner converges. This is easy
to show since we assume that the discount factor of the planner is smaller than one,
and that the set of transfers is bounded. Let πn, σn, be a sequence of contracts that con-
verges pointwise to π, σ, and choose ε > 0. We have to show that there is an N such that
|V (πn, σn)−V (π, σ)| < ε. Since the transfer τ is bounded and Q < 1, there is an T such that
the discounted surplus of the planner from time T on is smaller than ε/2. Thus we only
have to make the difference for the first T periods smaller than ε/2, which is the usual
Euclidian finite-dimensional case. �

Proposition 2 (Revelation Principle) For any message spaces M1 and M2, any allocation that
is feasible in the general mechanism is also feasible in the truth-telling mechanism.

Proof of Proposition 2 (Outline) Corresponding to any feasible allocation in the general
setup there is a feasible contract that implements this allocation. Fix a feasible allocation
and the corresponding contract {π, σ}. We will now define an outcome function for the
truth-telling mechanism that implements the same allocation. To complete the proof, we
then have to show that this outcome function satisfies constraints (6) to (8).

We will define the outcome function such that the allocation is the one implemented by
(π, σ) along the equilibrium path. To do that, let H t(st) be the set of histories ht in the
general game such that the sequence of incomes, transfers, and actions in ht coincides
with the sequence of reported incomes, transfers, and recommended actions in history st

in the restricted game. Likewise, define p(ht|st) as the probability of history ht conditional
on st:

p(ht|st) ≡ p(ht)∑
Ht(st) p(ht)

(42)

If st has zero probability (that is, if the sequence st of incomes, transfers, and actions
occurs with probability zero in the allocation implemented by {π, σ}), the definition of
p(ht|st) is irrelevant, and is therefore left unspecified. Now we define an outcome function
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for the truth-telling mechanism by:

π�(τt, at|et, s
t−1) ≡

∑
Ht−1(st−1),M1,M2

p(ht−1|st−1) σ(m1t|et, h
t−1) π(τt|m1t, s

t−1(ht−1))

π(m2t|m1t, τt, s
t−1(ht−1)) σ(at|et, m1t, τt, m2t, h

t−1). (43)

Basically, the outcome function is gained by integrating out the message spaces M1, , and
M2 and prescribing the outcomes that occur on the equilibrium path.

We now have to verify that with this choice of an outcome function conditions (6) to (8)
above are satisfied. In showing this, we can make use of the fact that {π, σ} are probability
measures and satisfy (3) and (4). The proof proceeds by substituting (43) into (3) and (4),
and showing that the resulting equations imply (6) to (8). This is carried out in detail in
Doepke and Townsend (2002). �

Proposition 3 The set W is nonempty and compact.

Proof of Proposition 3 To see that W is nonempty, notice that the planner can always
assign a zero transfer in every period and recommend the optimal action that the agent
would have chosen without the planner. For the w0(e) that equals the expected utility
of the agent under autarky under state e, all constraints are satisfied. To see that W is
bounded, notice that there are finite grids for income, the transfer, and the action. This
implies that in every period consumption and therefore utility is bounded from above
and from below. Since the discount factor β is smaller than one, total expected utility is
also bounded. Since each w0(e) has to satisfy a promise-keeping constraint with equality,
the set W must be bounded. To see that W is closed, assume there exists a converging
sequence wn such that wn ∈ W for all n. Corresponding to each wn there is a contract
π(τt, at|et, s

t−1)n satisfying constraints (6), (7), and (8). Since the contracts are within a
compact subset of R∞ with respect to the product topology, there is a convergent subse-
quence with limit π(τt, at|et, s

t−1). It then follows that w must satisfy (6), (7), and (8) when
π(τt, at|et, s

t−1) is the chosen contract. �

Proposition 4 For all w0 ∈ W and e0 ∈ E, and for any sk−1 and ek, there is an optimal contract
π� such that the remaining contract from sk−1 and ek on is an optimal contract for the auxiliary
planning problem with e0 = ek and w0 = w(sk−1, π�).

Proof of Proposition 4 We will first construct π� from a contract which is optimal from
time zero and another contract which is optimal starting at sk−1 and ek. We will then show
by a contradiction argument that π� is an optimal contract from time zero as well.

We have shown earlier that an optimal contract exists. Let π be an optimal contract from
time zero, and πk an optimal contract for e0 = ek and w0 = w(sk−1, π), with the elements of
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vector w(sk−1, π) defined in (12). Now construct a new contract π� that is equal to πk from
(ek, s

k−1) on, and equals π until time k and on all future branches other than ek, s
k−1. First,

notice that by the way π� is constructed, we have w(sk−1, π) = w(sk−1, π�), and since π�

equals πk from (ek, s
k−1), π� fulfills the reoptimization requirement of the proposition. We

now claim that π� is also an optimal contract. To show this, we have to demonstrate that
π� satisfies constraints (6), (7), and (8), and that it maximizes the surplus of the planner
subject to these constraints. To start, notice that the constraints that are imposed if we
compute an optimal contract taking e0 = ek and w0 = w(sk−1, π) as the starting point also
constrain the choices of the planner in the original program from (ek, s

k−1) onward. By
reoptimizing at (ek, s

k−1) in period k as if the game were restarted, the planner clearly
cannot lower his surplus since no additional constraints are imposed. Therefore the total
surplus from contract π� cannot be lower than the surplus from π. Since π is assumed to
be an optimal contract, if π� satisfies (6), (7), and (8), it must be optimal as well. Thus we
only have to show that (6), (7), and (8) are satisfied, or in other words, that reoptimizing
at ek, s

k−1 does not violate any constraints of the original problem.

The probability constraints (6) are satisfied by contract π�, since the reoptimized con-
tract is subject to the same probability constraints as the original contract. The promise-
keeping constraint (7) is satisfied since the new contract delivers the same on-path utilities
by construction. We still have to show that the incentive constraints (8) are satisfied. We
will do this by contradiction. Suppose that (8) is not satisfied by contract π�. Then there
is a deviation δ such that for some sl, el+1:

∞∑
t=l+1

βt

[∑
Ht

p(ht|π�, δ, sl, el+1)u(et + τt − δa(ht−1, et, τt, at))

]

>

∞∑
t=l+1

βt

[∑
St

p(st|π�, sl, el+1)u(et + τt − at)

]
. (44)

Consider first the case l + 1 ≥ k. On any branch that starts at or after time k, contract
π� is entirely identical to either π or πk. But then (44) implies that either π or πk violates
incentive-compatibility (8), a contradiction. Consider now the case l + 1 < k. Here the
contradiction is not immediate, since the remaining contract is a mixture of π and πk.
Using w(ek, s

k−1, δ) to denote the continuation utility of the agent from time k on under
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the deviation strategy, we can rewrite (44) as:

k−1∑
t=l+1

βt

[∑
Ht

p(ht|π�, δ, sl, el+1)u(et + τt − δa(ht−1, et, τt, at))

]
+

βk
∑

E,sk−1

p(ek, s
k−1|π�, δ, sl, el+1)w(ek, s

k−1, δ)

>
k−1∑
t=l+1

βt

[∑
St

p(st|π�, sl, el+1)u(et + τt − at)

]
+ βk

∑
E,sk−1

p(ek, s
k−1|π�, sl, el+1)w(ek, s

k−1).

(45)

Notice that for sk−1 that are reached with positive probability under the deviation we
have:

w(ek, s
k−1, δ) ≤ w(ek, δ(sk−1)), (46)

where δ(sk) is the history as seen by the planner (reported incomes, delivered transfers,
and recommended actions) under the deviation strategy. Otherwise, either π or πk would
violate incentive constraints. To see why, assume that ek, s

k−1 is a branch after which π�

is identical to π. If we had w(ek, s
k−1, δ) > w(ek, δ(sk−1)), an agent under contract π who

reached history δ(sk−1) could gain by following the deviation strategy δ afterwards. This
cannot be the case since π is assumed to be an optimal contract, and therefore deviations
are never profitable. Using (46) in (45) gives:

k−1∑
t=l+1

βt

[∑
Ht

p(ht|π�, δ, sl, el+1)u(et + τt − δa(ht−1, et, τt, at))

]
+

βk
∑

E,sk−1

p(ek, s
k−1|π�, δ, sl, el+1)w(ek, δ(sk−1))

>
k−1∑
t=l+1

βt

[∑
St

p(st|π�, sl, el+1)u(et + τt − at)

]
+ βk

∑
E,sk−1

p(ek, s
k−1|π�, sl, el+1)w(ek, s

k−1).

(47)

The outcome function π� enters (47) only up to time k − 1. Since up to time k − 1 the
outcome function π� is identical to π, and since by construction of π� continuation utilities
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at time k are the same under π� and π, we can rewrite (47) as:

k−1∑
t=l+1

βt

[∑
Ht

p(ht|π, δ, sl, el+1)u(et + τt − δa(ht−1, et, τt, at))

]
+

βk
∑

E,sk−1

p(ek, s
k−1|π, δ, sl, el+1)w(ek, δ(sk−1))

>
k−1∑
t=l+1

βt

[∑
St

p(st|π, sl, el+1)u(et + τt − at)

]
+ βk

∑
E,sk−1

p(ek, s
k−1|π, sl, el+1)w(ek, s

k−1). (48)

But now the left-hand side of (48) is the utility that the agent gets under plan π from
following the deviation strategy until time k and following the recommendations of the
planner afterwards. Thus (48) contradicts the incentive compatibility of π. We obtain a
contradiction, thus π� actually satisfies (8). This shows that plan π� is within the con-
straints of the original problem. Since π� yields at least as much surplus as π and π is an
optimal contract, π� must be optimal as well. �

Proposition 5 Program 1 and Program 2 are equivalent.

Proof of Proposition 5 We want to show that constraints (28) and (29) in Program 2 place
the same restrictions on the outcome function π(·) as the truth-telling constraints (23) of
Program 1. Let us first assume we have found a lottery π(τ, a,w′|w, e) that satisfies the
truth telling constraint (23) of Program 1 for all ê and δ : T × S → A. We have to show
that there exist utility bounds v(ê, e, τ, a) such that the same lottery satisfies (28) and (29)
in Program 2. For each ê, τ , and a, define v(ê, e, τ, a) as the maximum of the left hand side
of (28) over all â:

v(ê, e, τ, a) ≡ max
â

{∑
W′

π(τ, a,w′|w, e)
[
u(ê + τ − â) + β

∑
E

µ(e′|â)w′(e′)
]}

. (49)

Then clearly (28) is satisfied, since the left-hand side of (28) runs over â. Now for each τ
and a, define δ̂(·) by setting δ̂(τ, a) equal to the â that maximizes the left-hand side of (28):

δ̂(τ, a) ≡ argmaxâ

{∑
W′

π(τ, a,w′|w, e)
[
u(ê + τ − â) + β

∑
E

µ(e′|â)w′(e′)
]}

. (50)

Since π(τ, a,w′|w, e) satisfies (23) for any function δ(·) by assumption, we have for our
particular δ̂(·):

∑
T,A,W′

π(τ, a,w′|w, e)
[
u(ê + τ − δ̂(τ, a)) + β

∑
E

µ(e′|δ̂(τ, a))w′(e′)
]
≤ w(ê). (51)
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By the way we chose δ̂(·) and the v(·), we have from (28):

∑
W′

π(τ, a,w′|w, e)
[
u(ê + τ − δ̂(τ, a)) + β

∑
E

µ(e′|δ̂(τ, a))w′(e′)
]

= v(ê, e, τ, a). (52)

Substituting the left-hand side into (51), we get:∑
T,A

v(ê, e, τ, a) ≤ w(ê). (53)

which is (29).

Conversely, suppose we have found a lottery π(τ, a,w′|w, e) that satisfies (28) and (29) in
Program 2 for some choice of v(ê, e, τ, a). By (28), we have then for any ê and â and hence
any δ : T × S → A:

∑
W′

π(τ, a,w′|w, e)
[
u(ê + τ − δ(τ, a)) + β

∑
E

µ(e′|δ(τ, a))w′(e′)
]
≤ v(ê, e, τ, a). (54)

Substituting the left-hand side of (54) into the assumed (29) for the v(ê, e, τ, a), we main-
tain the inequality:

∑
T,A,W′

π(τ, a,w′|w, e)
[
u(ê + τ − δ(τ, a)) + β

∑
E

µ(e′|δ(τ, a))w′(e′)
]
≤ w(ê). (55)

But this is (23) in Program 1. Therefore the sets of constraints are equivalent, which proves
that Program 1 and Program 2 are equivalent. �

Proposition 6 Program 3 and Program 4 are equivalent.

Proof of Proposition 6 We want to show that constraints (38)-(41) in Program 4 place the
same restrictions on the outcome function π(·) as the constraints (34) and (36) of Program
3. Let us first assume we have found a lottery π(a1, y, τ, a2,w

′|w, e) that satisfies the con-
straints (34) and (36) of Program 3 for all ê, δ1, and δ2. We have to show that there exist
utility bounds v(ê, e, τ, a) such that the same lottery satisfies (39)-(41) in Program 4. For
each ê, a1, â1, y, τ , and a2 define v2(ê, a1, â1, y, τ, a2) as the maximum of the left hand side
of (41) over all â2:

v2(ê, a1, â1, y, τ, a2) ≡ max
â2

{∑
W′

π(a1, y, τ, a2,w
′|w, e)

f (y|ê, â1)
f (y|e, a1)[

u(ê, â1, y, τ, â2) + β
∑

E
g(e′|ê, â1, y, τ, â2)w′(e′)

]}
. (56)
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This choice guarantees that (38) and (41) are satisfied. Next, for all ê and a1, define v1(ê, a1)
as the maximum over the left-hand side of (40):

v1(ê, a1) ≡ max
â1

{ ∑
Y,T,A2

v2(ê, a1, â1, y, τ, a2)

}
. (57)

This choice guarantees that (40) is satisfied. Finally, (36), (40), and (41) jointly imply that
(39) is satisfied (if it were violated, we could construct a deviation strategy that violates
(36)).

Conversely, suppose we have found a lottery π(a1, y, τ, a2,w
′|w, e) that satisfies (38)-(41)

in Program 4 for some choice of utility bounds. Because of (41), we have for any δ2:

∀ê, a1, â1, y, τ, a2 : ∑
W′

π(a1, y, τ, a2,w
′|w, e)

f (y|ê, â1)
f (y|e, a1)[

u(ê, â1, y, τ, δ2(a1, y, τ, a2)) + β
∑

E
g(e′|ê, â1, y, τ, δ2(a1, y, τ, a2))w′(e′)

]
≤ v2(ê, a1, â1, y, τ, a2). (58)

Plugging the left-hand side of this equation into (38) for the v2(ê, a1, â1, y, τ, a2) maintains
the inequality, and therefore gives (34). We also have for any given δ1 and δ2:

∀ê, a1, y, τ, a2 : ∑
W′

π(a1, y, τ, a2,w
′|w, e)

f (y|ê, δ1(a1))
f (y|e, a1)[

u(ê, δ1(a1), y, τ, δ2(a1, y, τ, a2)) + β
∑

E
g(e′|ê, δ1(a1), y, τ, δ2(a1, y, τ, a2))w′(e′)

]
≤ v2(ê, a1, δ1(a1), y, τ, a2). (59)

Substituting the left-hand side of (40) for the given δ1 into (39) gives:

∀ê �= e :
∑

A1,Y,T,A2

v2(ê, a1, δa1, y, τ, a2) ≤ w(ê). (60)

Now we can replace the v2(ê, a1, δa1, y, τ, a2) in this equation by the left-hand side of (59)
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while maintaining the inequality:

∀ê �= e : ∑
A1,Y,T,A2,W′

π(a1, y, τ, a2,w
′|w, e)

f (y|ê, δ1(a1))
f (y|e, a1)[

u(ê, δ1(a1), y, τ, δ2(a1, y, τ, a2)) + β
∑

E
g(e′|ê, δ1(a1), y, τ, δ2(a1, y, τ, a2))w′(e′)

]
≤ w(ê), (61)

But this is (36) in Program 3 for our particular choice of δ1 and δ2. Since the choice of
δ1 and δ2 was arbitrary, (36) is satisfied, which shows that Program 1 and Program 2 are
equivalent. �

A.2 Computing the Value Set

Our analysis was based on the assumption that the set W of feasible utility vectors is
known in advance. In practice, W is not known and needs to be computed alongside the
value function V (w, e). W can be computed with the dynamic-programming methods
described in detail in Abreu, Pierce, and Stachetti (1990), henceforth APS. An outline of
the method follows.

We start by defining an operator B that maps nonempty compact subsets of R#E into
nonempty compact subsets of R#E. Let W′ be a nonempty compact subset of R#E . Then
B(W′) is defined as follows:

Definition 6 A utility vector w ∈ B(W′) if there exist probabilities π(τ, a|w, e) and future
utilities w′(w, e, τ, a) ∈ W′ such that (14) to (17) hold.

The key point is that utility promises are chosen from the set W′ instead of the true value
set W. Intuitively, B(W′) consists of all utility vectors w that are feasible today (observ-
ing all incentive constraints), given that utility vectors from tomorrow onward are drawn
from the set W′. The fact that B maps compact set into compact sets follows from the fact
that all constraints are linear and involve only weak inequalities. Clearly, the true set of
feasible utility vectors W satisfies W = B(W), thus W is a fixed point of B. The compu-
tational approach described in APS consists of using B to define a shrinking sequence of
sets that converges to W.

To do this, we need to start with a set W0 that is known to be larger than W a priori. In
our case, this is easy to do, since consumption is bounded and therefore lifetime utility is
bounded above and below. We can choose W0 as an interval in R#E from a lower bound
that is lower than the utility from receiving the lowest consumption forever to a number
that exceeds utility from consuming the highest consumption forever. We can now define
a sequence of sets Wn by defining Wn+1 as Wn+1 = B(Wn). We have the following results:
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Proposition 7

• The sequence Wn is shrinking, i.e., for any n, Wn+1 is a subset of Wn.

• For all n, W is a subset of Wn.

• The sequence Wn converges to a limit W̄, and W is a subset of W̄.

Proof of Proposition 7 To see that Wn is shrinking, we only need to show that W1 is a
subset of W0. Since W0 is an interval, it suffices to show that the upper bound of W1

is lower than the upper bound of W0, and that the lower bound of W1 is higher than
the lower bound of W0. The upper bound of W1 is reached by assigning maximum
consumption in the first period and the maximum utility vector in W0 from the second
period onward. But the maximum utility vector W0 by construction corresponds to con-
suming more than maximum consumption every period, and since utility is discounted,
the highest utility vector in W1 therefore is smaller than the highest utility vector in W0.

To see that W is a subset of all Wn, notice that by the definition of B, if C is a subset of
D, B(C) is a subset of B(D). Since W is a subset of W0 and W = B(W), we have that W
is a subset of W1 = B(W0), and correspondingly for all the other elements.

Finally, Wn has to converge to a nonempty limit since it is a decreasing sequence of com-
pact sets, and the nonempty set W is a subset of all elements of the sequence. �

Up to this point, we know that Wn converges to W̄ and that W is a subset of W̄. What
we want to show is that W̄ and W are actually identical. What we still need to show,
therefore, is that W̄ is also a subset of W.

Proposition 8 The limit set W̄ is a subset of the true value set W.

Proof of Proposition 8 The outline of the proof is as follows. To show that an element
w of W̄ is in W, we have to find π(τt, at|et, s

t−1) that satisfy constraints (6), (8), and (10)
for w. These π(τt, at|et, s

t−1) can be constructed period by period from the π that are im-
plicit in the definition of the operator B. Notice that in each period continuation utili-
ties are drawn from the same set W̄, since W̄ as the limit of the sequence Wn satisfies
W̄ = B(W̄). By definition of B, the resulting π(τt, at|et, s

t−1) satisfy the period-by-period
constraints (14) to (17). We therefore need to show that satisfying the period-by-period
constraints (with a given set of continuation utilities) is equivalent to satisfying the origi-
nal constraints (6), (8), and (10), which we have done above in Section 4.2. �

For numerical implementation of this algorithm, we have to deal with the additional
restriction that the set of possible future utilities needs to be finite, so that linear program-
ming can be used. Instead of starting with the set W0 which is an interval in R#E, we
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therefore start out with a finite subset WD
0 of W0, where the utility promises for each

type lie on a discrete grid. To apply the APS algorithm, an operator BD is now defined
as mapping subsets of WD

0 into subsets of WD
0 , that is, both current utilities and future

utility promises are drawn from the same set:

Definition 7 For any W′ ⊆ WD
0 , the set BD(W′) consists of all w ∈ WD

0 such that for all
e ∈ E there exist probabilities π(τ, a,w′|w, e) such that (20) to (23) hold.

Analogously to the above, we can now define a sequence WD
n by setting WD

n+1 = BD(WD
n ).

This sequence has the following properties:

Proposition 9

• The sequence WD
n is shrinking, i.e., for any n, WD

n+1 is a subset of WD
n .

• For all n, WD
n is a subset of Wn.

• The sequence WD
n converges to a limit W̄D, and W̄D is a subset of W.

Proof of Proposition 9 To show that WD
n is shrinking, it suffices to show that WD

1 is a
subset of WD

0 , which is true by definition of the operator BD. The second claim is true
since WD

0 is a subset of W0, and the operator BD is more restrictive than the operator B,
since current utilities are drawn from a smaller set. WD

n converges since it is a decreasing
sequence of compact sets. Finally, since WD

n ⊆ Wn for all n, we must have W̄D ⊆ W̄ =
W. �

Notice that the proof does not rule out that the limit set W̄D may be the empty set; that
may well be the case if the initial set WD

0 is too coarse. We do know, however, that any
element of W̄D is a member of the true value set. In the language of Judd, Yeltekin, and
Conklin (2003), W̄D is an inner approximation of the true value set W.

The question arises whether it is possible to assess how well the true value set is being
approximated. In the context of dynamic games, Judd, Yeltekin, and Conklin (2003) ap-
proach this problem by complementing inner approximations of the value set with outer
approximations, i.e., sets that are known to be larger than the true value set. The dif-
ference between inner and outer approximation then provides bounds on the quality of
the approximation. The same approach is not applicable here, however, since it requires
the ability to compute tight outer approximations. Our linear programming approach
requires the use of discrete value sets, which generally cannot be used to provide outer
approximations.

There exist a number of general results on the approximation of infinite-dimensional lin-
ear programming problems by programs with finitely many variables. If we used the true
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value set W as the set of possible utility promises, the resulting linear program would
have an infinite number of variables (though still a finite number of constraints), since
probability weight could be put on any of the generally infinitely many members of W.
We can think of our finite linear programs as versions of the general infinite-dimensional
linear programs under additional restrictions, namely that zero probability be assigned
to all but a given finite set of future utility promises. Hernández-Lerma and Lasserre
(1998) provide conditions under which the values of a sequence of such restricted lin-
ear programs converge to the value of the true infinite-dimensional program (see their
Proposition 2.2 and Theorem 3.2). Translated into our application, if Wk is an increasing
sequence of finite approximations of W such that Wk ⊂ W, the key condition is that
∪∞

k=0Wk is dense in W. It may seem that these results should apply easily to our envi-
ronment, since W is a subset of an interval in R#E . However, notice that the Wk cannot
be chosen directly, but would have to be generated as a fixed point of the BD operator
for each k, so without additional assumptions the properties of Wk cannot be directly
inferred.

As a practical matter, it is sometimes possible to judge the quality of approximations
if there are special cases with known solutions. The hidden storage application in Sec-
tion 7.1 provides such an example, since there are theoretical results that apply to the case
when the planner and the agent face the same credit-market return.
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Figure 3: Policy Functions, R=1.1
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Figure 8: First-Period Policy Functions, a2 Private Information
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Figure 9: First-Period Policy Functions, e, a1, and a2 Private Information
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