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We develop a theory that rationalizes the use of a dominant unit of account in an
economy. Agents enter into non-contingent contracts with a variety of business part-
ners. Trade unfolds sequentially in credit chains and is subject to random matching. By
using a dominant unit of account, agents can lower their exposure to relative price risk,
avoid costly default, and create more total surplus. We discuss conditions under which
it is optimal to adopt circulating government paper as the dominant unit of account,
and the optimal choice of “currency areas” when there is variation in the intensity of
trade within and across regions.
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1. INTRODUCTION

CLASSICAL ECONOMISTS pointed out money’s various functions in society. Since then,
large literatures have rationalized the use of money as a store of value and as a medium
of exchange.1 In contrast, the use of money as a unit of account for future payments
has received little attention. This fact is surprising given the widespread use of money-
denominated long-term contracts (such as bonds and mortgages) in modern economies.
The use of money as a unit of account implies that inflation has redistribution effects,
which lie at the heart of Irving Fisher’s debt-deflation theory of depressions (Fisher
(1933)) and which are just as relevant today.

The goal of this paper is to explain the role of money as a unit of account for future
payments. At first sight, the use of money as a unit of account might appear to be a matter
of convenience only. If future payments will be settled in money anyway (since it is the
medium of exchange), isn’t it practical to specify the value of the payments in terms of
money as well (as the unit of account)? While such an explanation may seem straightfor-
ward in modern economies where the same money serves both functions (such as in the
United States, where the dollar is both the dominant medium of exchange and the domi-
nant unit of account), monetary history offers numerous examples where the medium-of-
exchange and unit-of-account functions do not coincide.
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Indeed, in medieval Europe a separation of the different functions of money was the
rule rather than the exception (see Spufford (1988) and Kindleberger (1993) for overviews
of European monetary history). In France, for example, the livre tournois served as unit of
account for centuries during the medieval and early modern periods, even when the cor-
responding coin was no longer in circulation. The value of a coin used as an accounting
currency could also be different from that of the same coin in circulation, a phenomenon
referred to as “ghost money” by Cipolla (1956) and “imaginary money” by Einaudi (1937,
1953).2 In Germany, specific coins (such as the Vereinsthaler) were used as an account-
ing currency across large areas, even though different media of exchange circulated in
the various sovereign states of Germany. Also common was the use of natural units in
contracts (such as bushels of wheat) and of bundles (such as a combination of a natural
unit and a monetary unit). A more recent example of a unit of account that is not also a
medium of exchange is the ECU (European Currency Unit), which was based on a basket
of European currencies and served as a unit of account in European trade before the in-
troduction of the euro. A practice that is still common today is the use of foreign currency
as a unit of account, such as the use of Italian Florin in medieval Europe, the modern use
of the U.S. dollar in trade relationships not involving the United States, and mortgage
borrowing denominated in euros or Swiss francs in Eastern Europe.

In light of these observations, we address two separate questions on the role of money
as a unit of account. First, why do economic agents often find it useful to coordinate on
a dominant unit of account? Second, what should a useful unit of account look like? The
answer to the first question should also address the limits of coordination: why do differ-
ent groups of people sometimes use different units of account, for example by forming
currency areas? The answer to the second question should explain in particular the emer-
gence of government-issued money as a unit of account: Why is it often the dominant unit
of account in modern times, but was less so in earlier times? And why are the different
functions of money not always linked (as in medieval Europe, and in modern countries
where private contracts are dollarized)?

Our theory is based on four features shared by most economies. First, agents enter into
contracts that involve payment promises that are later costly to break or renegotiate. Sec-
ond, there are multiple widely traded goods in which promised payments can, in principle,
be denominated, and which are subject to fluctuating prices. These goods can be inter-
preted broadly, for example as currencies, precious metals, or government paper. In this
setting, a contract between a lender and a borrower has to specify the unit of account,
that is, the good in which the value of future payments is specified. The cost of breaking
promises along with price risk implies that borrowers can gain from using the same unit
of account on both sides of the balance sheet. Specifically, if the price realization of a
good that denominates a large part of a borrower’s income is low, the borrower may have
difficulty meeting his own promises. This risk can be hedged by denominating outgoing
payments in the same good that denominates borrower income.3

2Even where a circulating coin was used as unit of account, its use in contracts was solely as a specification
of value: “. . . it was tacitly assumed that the payment could be settled with any other commodity of equivalent
value. A debt stipulated in 20 solidi in a French document of November 1107 was, we know from a later
document, settled with a horse” (Cipolla (1956, p. 5); see also the discussion in Sargent and Velde (2002,
pp. 126–128)).

3We focus on the unit-of-account function of money for future payments precisely because the delay be-
tween making the promise and the actual payment implies the possibility of relative-price changes. In contrast,
the unit-of-account function of money for quoting current prices is not subject to the same price risk. How-
ever, the unit of account for current prices may still matter if additional frictions are present, such as a cost of
changing prices (from which we abstract here).
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To give an example of the balance-sheet risk that we have in mind, consider an economic
agent (such as a household, a firm, or a bank) who holds assets that are denominated in
U.S. dollars. In other words, the agent expects to receive future payments, the value of
which is fixed in terms of dollars. Now suppose that the agent wants also to incur liabilities,
such as by borrowing in order to invest in a business or buy a house. If these liabilities are
denominated in a unit of account other than the U.S. dollar (say, euros), the agent faces
the risk that the relative price of the units of account for assets and liabilities will change
until future payments are due. Here, the risk is that the price of euros will rise relative
to dollars. If there is a big change in the relative price, the value of the assets (the future
payments in terms of dollars) may be too low to repay the liabilities (in terms of euros),
resulting in costly default. By using the same unit of account for both assets and liabilities,
the agent can avoid this relative-price risk and thereby lower the probability of default.

Hence, the first two elements of our theory, the cost of breaking promises and price
risk, explain the demand for specific units of account. The third element of our theory is
that efficient production requires an entire network of borrowing and lending relation-
ships. As a result, a typical agent is both a borrower and a lender—he is a member of a
credit chain. Credit chains arise naturally in modern economies not only in the organi-
zation of production (e.g., raw materials, intermediates, and final-goods producers), but
also in commerce (producer, wholesaler, retailer) and finance (borrower, intermediary,
investor). The presence of credit chains explains the propagation of units of account be-
yond bilateral relationships. In a credit chain, what is a promise for one agent is income
for the next, thus leading to demand for a common unit of account in the entire chain.

The final element of our theory is that the formation of credit chains has a random-
matching component that is not contractible. When a borrower and a lender meet, they
typically cannot condition payment on the identity of their future business partners, let
alone those partners’ partners and so on. Balance sheet risk therefore comes from two
sources. In addition to variation in relative prices, there is matching uncertainty, as agents
do not know which credit chain they will ultimately be part of. It then becomes advanta-
geous to adopt a unit of account that is likely to be compatible with many future potential
trading partners, leading to the optimality of an economy-wide dominant unit of account.

The nature of the efficiency gain from adopting a dominant unit of account depends on
how costly it is to break promises. In the main part of the analysis, we consider the extreme
where breaking promises is infinitely costly. In this setting, contracts are written so that
all parties are always able to meet their promises, and default never occurs. To ensure
that default can be avoided, borrowers lower debt ex ante, which leads to inefficiently low
production. Use of a dominant unit allows more borrowing and thereby more production.
In the Supplemental Material (Doepke and Schneider (2017)), we also explain how our
results generalize to the case where breaking promises carries only a small cost. If default
costs are sufficiently small, borrowers will produce at the efficient scale and default if
necessary. Use of a dominant unit of account then lowers average ex post default costs.

The argument we have outlined so far explains why agents coordinate on a common unit
of account, but leaves open the question of exactly what should be the unit of account.
Given that in our theory a key role of the unit of account is to minimize balance-sheet risk,
choosing a unit of account that already denominates the income of major borrowers is
often useful. This observation suggests a tight link between the use of government-issued
money as unit of account and the issuance of government debt. Consider a government
that issues money-denominated (i.e., nominal) bonds to be held by households, firms,
and banks. The payments promised in the bonds are part of these agents’ future income.
If the same agents now incur future liabilities, they can reduce their balance-sheet risk by
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denominating these liabilities in money also. Thus, the government’s use of money for its
own borrowing propagates to private contracts and leads to money being the dominant
unit of account.

Notice that our argument explaining the use of circulating money as the unit of ac-
count relies solely on the role of money as denominating government debt, but not on the
medium-of-exchange role of money. Indeed, our theoretical model features a centralized
spot market in which there is no need for a specialized medium of exchange. The impli-
cation of a link between government debt and the unit of account is consistent with the
observation that, historically, units of account and media of exchange often used to be
distinct, but became unified in modern economies characterized by the widespread use of
government-issued nominal bonds.

In our theory, there are additional factors (other than the presence of government debt)
that determine the optimal unit of account. For example, it is useful for a unit of account
to be stable in value relative to other goods traded in the economy. This feature explains
why if the value of money is too volatile (i.e., volatile inflation), local currency may fail to
be used as a unit of account even if nominal government debt is present. Such a scenario
is akin to the dollarization of private contracts that is often observed in countries grap-
pling with high inflation. In addition, different regions or countries may have different
dominant income sources. This scenario leads to a tradeoff between a unified unit of ac-
count versus multiple units that may be better suited to local conditions, that is, a theory
of optimal currency areas.

The paper is structured as follows. In the following section, we relate our work to the
existing literature. In Section 3, we consider the optimal use of units of account in bilateral
contracts. In Section 4, we introduce credit chains and random matching to account for
the use of a dominant unit of account throughout an entire economy. In Section 5, we
discuss conditions under which government-issued paper (such as money) may arise as
the optimal unit of account. In Section 6, we apply the model to the issue of optimal
currency areas. Section 7 concludes. Proofs for propositions are provided in Appendix A,
and extensions of the basic model setup are discussed in the Supplemental Material.

2. RELATED LITERATURE

Our paper is related to existing work on balance-sheet effects of price changes. The
basic idea that mismatched units of account on a balance sheet can create problems is
familiar from the banking literature, and currency mismatch has played an important
role in banking and financial crises (see, e.g., Schneider and Tornell (2004) and Burnside,
Eichenbaum, and Rebelo (2006)). In this paper, we go beyond individual balance sheets
and find conditions under which a dominant unit of account will be adopted in an entire
economy. Relative to the banking literature, the key features that lead to this result are
that production takes place in chains of credit (modeled as in Kiyotaki and Moore (1997))
and that contracting is non-synchronized.

Our work is also related to a small literature on the optimality of nominal contracts.
Jovanovic and Ueda (1997) considered a static moral hazard problem in which nominal
output is observed before the price level (and therefore real output) is revealed. In addi-
tion, contracts are not renegotiation-proof, so that principal and agent have an incentive
to renegotiate after nominal output is observed. In the optimal renegotiation-proof solu-
tion, the principal offers full insurance to the agent once nominal output is known. This
implies that the real wage depends on nominal output, so that the contract can be inter-
preted as a nominal contract. Meh, Quadrini, and Terajima (2015) integrated a similar
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mechanism into a model with firm heterogeneity and financial constraints, and studied
how different monetary regimes affect the degree of indexation. The mechanism in these
papers operates within a relatively short time horizon, namely the lag between the re-
alization of a nominal variable and the observation of the corresponding price level. In
contrast, the balance-sheet effects in our theory are equally relevant for long-term assets
such as bonds and mortgages, which account for the major part of redistribution effects
of inflation.

Freeman and Tabellini (1998) considered an overlapping-generations economy with
spatially separated agents in which fiat money serves as a medium of exchange. They
provided conditions for fiat money to serve also as a unit of account. In contrast, in our
theory exchange takes place in a frictionless centralized market, without a need for a
medium of exchange. Rather, in our theory the occasional coincidence between the unit
of account and the medium of exchange happens only in the presence of government debt
denominated in fiat currency. Our approach has the advantage that it can explain why, in
modern economies with widespread use of government debt, it is common for fiat money
to serve both functions, whereas in earlier times distinct monetary units were used as unit
of account and medium of exchange.

Cooper (1990) and Acemoglu (1995) also considered environments in which each agent
writes several contracts within a fixed network. They assumed uncertainty about the value
of money and provided conditions for the coexistence of multiple equilibria with indexed
or nominal contracts. For example, both equilibria exist if the network of contracts is such
that coordination on a single unit of account provides perfect hedging. Our setup has
multiple goods (and hence multiple sources of price risk), so that a fixed network does
not give rise to a dominant unit of account. Instead, random matching is critical both for
making a dominant unit of account optimal and for determining what that unit looks like.

Our model shares several features with the literature on microfoundations for media of
exchange that follows the seminal work of Kiyotaki and Wright (1989). In particular, a key
common element is that there are gains from coordinating payment across many pairwise
meetings. In the typical model of decentralized exchange, there is no double coincidence
of wants in individual meetings. Gains from trade are realized by passing the medium of
exchange along from one meeting to the next. In our model, there are gains from making
credit chains longer by adding additional producers. Those gains are realized by choosing
the unit of account so funds can be passed along the credit chain without default once
income risk is realized and credit contracts are settled.

Another prominent element in models of media of exchange is random matching. Com-
pared to our environment, however, the role of random matching in those models is quite
different. Models of media of exchange typically assume that agents cannot enforce con-
tracts written in past meetings. Random matching then ensures that agents do not meet
each other again. As a result, credit becomes infeasible and money becomes essential
(e.g., Kocherlakota (1998)). In our setup, contracts can be enforced. The role of random
matching is to make borrowers’ income risk similar across many bilateral contracting re-
lationships, which implies the emergence of a dominant unit of account.

Within the literature on media of exchange, Lagos and Wright (2005) introduced a
structure in which both decentralized and centralized markets play a role, as in our setup.
However, in Lagos and Wright (2005) exchange takes place in both markets, and the
centralized market mainly serves to offset the heterogeneity that is generated by random
matching. In contrast, in our theory random matching affects only the contracting stage,
and all contracts are ultimately settled in the centralized market.

In most of the paper, we employ a normative approach that derives properties of
second-best allocations, rather than spell out a particular game that describes trade in the
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economy. A number of papers on media of exchange also follow this strategy, for exam-
ple Kocherlakota (1998, 2002), Cavalcanti and Wallace (1999), Hu and Rocheteau (2013),
and Hu, Kennan, and Wallace (2009). A difference in approach is that those papers tend
to make no a priori restrictions on contracts. In contrast, a key friction in our setup is
that contracts are non-contingent. In this regard, our model is closer to the literature on
general equilibrium with exogenously incomplete markets that also studies welfare prop-
erties of a given asset structure. An interesting question for future research is to study the
unit of account in an economy in which incompleteness arises endogenously from limited
commitment or asymmetric information. Such an approach may also shed further light on
why the same asset often serves as the medium of exchange as well as the unit of account.

The literature on media of exchange also studies the government as a large player
(Aiyagari and Wallace (1997), Li and Wright (1998)). Our results on government debt
as a unit of account are related to results on how the medium of exchange is affected by
what the government accepts in transactions. In both cases, the size of government is a
key parameter. What is different is how one would measure size in each case. In models of
media of exchange, what matters is the share of transactions with the government, due to
either government purchases or the collection of taxes (Starr (1974) and Goldberg (2012)
provided models of the “tax foundation” theory of money as a medium of exchange). In
our context, the appropriate measure of the size of government is the effect of govern-
ment liabilities on borrowers’ ability to pay.

Another important theme in our setup is that the optimal unit of account should not be
subject to large price spikes. Models of media of exchange also point to stability in value
as a property that may select the optimal medium among several objects. For example,
Banerjee and Maskin (1996) and Rocheteau (2011) studied environments in which goods
or assets are subject to asymmetric information about quality. The object with the smallest
conditional volatility in quality then emerges as the medium of exchange. In contrast to
these papers, information in our setup is symmetric. The possibility of price spikes makes
a unit of account unattractive only if they cannot be hedged due to the incompleteness of
contracts.

Finally, our work relates to the literature on the redistribution effects of inflation. Most
of this literature focuses on a particular aspect of redistribution, namely the revaluation
of government debt (see, e.g., Bohn (1988, 1990), Persson, Persson, and Svensson (1998),
Sims (2001)). Government debt plays an important role in our model also, in a mech-
anism that renders fiat money an attractive choice for the unit of account. Redistribu-
tion effects among private agents were recently considered by Adam and Zhu (2016),
Auclert (2017), Coibion, Gorodnichenko, Kueng, and Silvia (2012), Doepke and Schnei-
der (2006a), Doepke and Schneider (2006b), Doepke, Schneider, and Selezneva (2016),
Meh, Ríos-Rull, and Terajima (2010), and Sterk and Tenreyro (2015). These papers take
as given that agents write money-denominated contracts, whereas here our objective is to
explain why they choose to do so.

3. INCOME RISK AND THE OPTIMAL UNIT OF ACCOUNT IN BILATERAL CONTRACTS

In this section, we analyze a bilateral contracting problem. The analysis shows why the
unit of account matters in contracting, and it isolates forces that determine the optimal
unit of account. In the following section, we expand the analysis to a general equilibrium
model with many contracting relationships, in order to understand why we often observe
coordination on a dominant unit of account in an entire economy.
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3.1. Environment: Dates, Goods, and Preferences

We consider a bilateral contracting problem between the supplier of a customized good
and his customer. There are three dates, 0, 1, and 2. At date 0, the supplier and customer
can write a contract, to be specified below. At date 1, the supplier can expend x > 0 units
of labor effort to make x units of the customized good, available for consumption by the
customer at date 2. Only the customer benefits from the customized good—it cannot be
consumed by the supplier and it cannot be sold in a market.

Also at date 2, a spot market opens in which two goods A and B can be traded, which
may provide utility to the supplier and the customer. The price vector p in the spot market
is exogenous and random, with convex and compact support P ⊂R

2
>0, where R>0 denotes

the set of strictly positive reals. When the spot market opens, the customer receives a
random endowment vector y of these traded goods, drawn from a distribution with com-
pact support Y ⊂ R

2
≥0, where R≥0 denotes the set of nonnegative reals. Both supplier and

customer can access the spot market.
Our assumption that the support of the endowment vector is unrelated to that of prices

simplifies the analysis. In principle, one could imagine that the support of prices changes
conditional on the realization of the endowment. Our assumption is natural if endowment
risk is primarily idiosyncratic. We emphasize that the assumption only restricts supports:
for given support, we allow prices and endowments to be correlated in arbitrary ways.
Convexity of the support of prices is helpful to establish uniqueness of the optimal unit of
account below.

The utility function of a supplier who works x units of time and consumes a vector c of
tradable goods is

v(c)− x�

where v(·) is homogeneous of degree 1. The utility of a customer who receives x units of
the customized good and consumes a vector c of tradable goods is

v(c)+ (1 + λ)x�

We assume that λ > 0 so that there are gains from trade, that is, both parties can be made
better off by a transfer of tradable goods from the customer to the supplier in exchange
for the customized good x produced using the supplier’s effort.

It is convenient to normalize prices of tradable goods and the units in which goods are
measured such that the utility derived from one unit of income in the spot market is 1,
and such that the expected price of each good i ∈ {A�B} is 1.

ASSUMPTION 1—Normalization of Prices: Let P̃(p) be the expenditure function at a util-
ity level of 1, that is,

P̃(p)= min
c

{
p′c

}
subject to v(c)≥ 1. Prices are normalized such that the price vector p satisfies

P̃(p)= 1 for all p ∈ P�

In addition, units are chosen such that the expected price of each good i ∈ {A�B} equals 1:

E
(
pi

) = 1�
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Setting P̃(p)= 1 is without loss of generality, because only relative prices matter. Start-
ing from any initial price distribution p̃ with P̃(p̃) �= 1, we can rescale prices as p= p̃/P̃(p̃)
for each p̃ to meet the condition. The assumption that E(pi) = 1 is not a simple normal-
ization of the price vector. It is nevertheless innocuous: it amounts to a choice of the units
in which each tradable good is measured.4

Given that v is homogeneous of degree 1, the normalization P̃(p) = 1 implies that the
indirect utility (in terms of consuming market goods) of an agent who owns tradable goods
y at the beginning of date 2 is simply p′y.

3.2. Contracts

The timing of the environment implies that when supplier and customer meet at date 0
to agree on a contract, a need for credit arises. The supplier must work at date 1 if he is
to deliver the customized good at date 2. However, at date 0 the customer does not have
any tradable goods that could be used to pay for the customized good up front. Rather,
any payments have to take place at date 2, after uncertainty regarding the customer’s
endowment y and the price realization p has been resolved. A contract specifies a quantity
of the customized good to be delivered from supplier to customer together with a payment
in terms of tradable goods from the customer to the supplier.

The key contracting friction that underlies our analysis is that contracts involve simple,
non-contingent payment promises. Specifically, a payment promise consists of a bundle
π ∈ R

2
≥0 of the market goods. The bundle is agreed on at date 0 before uncertainty is

resolved. The payment promise cannot be made contingent on the realization of the cus-
tomer’s endowment y or the vector of tradable goods prices p. In our main analysis, we
assume that an agent who defaults on a promise faces an arbitrarily large punishment, so
that all payment promises that are made are kept. In Appendix D in the Supplemental
Material, we show how our results can be generalized to a setting where the cost of break-
ing promises is positive but finite, so that there is an incentive to choose contracts with
a high likelihood that promises will be kept. The contracting friction can be motivated
by legal costs of interpreting and enforcing complicated contracts, and fits well with the
observation that most real-world contracts indeed involve simple promises.

The full contract between supplier and customer specifies the artisanal goods x to be
produced by the supplier at date 1 and to be delivered to the customer at date 2, and the
payment promise π. By promising π to the supplier, the customer commits to delivering
goods π at date 2. Since the promised goods can be freely exchanged in the spot mar-
ket, the commitment is effectively to the value p′π. Since only the value of the payment
matters, there is no need to settle the contract in the goods in which it is specified.

In the second period, the customer must be able to make the promised payment for all
possible realizations of endowments and prices. A feasible payment thus satisfies

p′π ≤ p′y for all p ∈ P and y ∈ Y � (1)

Our focus on non-contingent contracts implies that the distribution of endowments y and
prices p matters for feasibility only via their supports P and Y . Compactness of P and Y
implies that the set of feasible payments π is compact. A feasible contract (x�π) specifies
production of artisanal goods x together with a feasible payment.

4For example, if for good A we have E(pA) = 2, we can divide the unit of measuring good i by 2 (i.e.,
multiply endowments by 2 and modify the utility function by dividing consumption of good i by 2 where it
enters utility) to yield an expected price of 1.
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3.3. The Unit of Account

The assumptions on contracting now allow us to discuss the use of units of account.
In the customer-supplier relationship, the unit of account used in contracting is given
by the bundle of market goods that denominates the payment promise π. For example,
whenever in a given contract we have πA > 0 and πB = 0, we say that good A serves as
the unit of account. In this case, the value of the promise is specified in terms of units of
good A, just as in the U.S. economy most future payments are in terms of U.S. dollars.
It is also possible that a non-degenerate bundle serves as the unit of account. In the real
world, this case would correspond to a contract that specifies payments in two different
currencies or commodities, such as U.S. dollars and euros.

To formalize the notion of a unit of account, we can decompose any payment π into
a scalar scale of the payment q(π) and the unit of account of the payment u(π), where
0 ≤ ui ≤ 1 and

∑
i u

i = 1. Here i ∈ {A�B} denotes the goods included in the payment. For
a given payment π, q(π) and u(π) can be computed as

q(π)=
∑
i

πi� (2)

u(π)= q(π)−1π� (3)

so that the payment is given by π = q(π)u(π).
We refer to the vector u(π) as the unit of account because it determines in which goods

the payment is denominated. The payment in terms of good i ∈ {A�B} is given by q(π)ui.
If we have uA = 1 and hence uB = 0, the payment is entirely in terms of good A, so that
good A serves as the unit of account. If uA = uB = 0�5, the unit of account is an equally
weighted bundle of goods A and B.

Recall from Section 3.1 that the indirect utility from consuming market goods of
a consumer who owns tradable goods π is given by p′π. Given Assumption 1 (i.e.,
E(pi) = 1), the expected indirect utility derived from owning π is

∑
i π

i = q. That is,
utility from consuming market goods depends only on the scale of a payment received,
but not on its composition (i.e., the unit of account). The parties’ expected utility from a
contract (x�π) can now be written as

US(x�π)= q(π)− x� (4)

UC(x�π)=E
(
p′y

) − q(π)+ (1 + λ)x� (5)

where US is the utility of the supplier and UC the utility of the customer.
Our assumptions on technology and preferences imply that a higher scale of payment

together with proportionally more production of customized goods always results in a
Pareto improvement. Indeed, if we increase x one-for-one with q, supplier utility is un-
changed, whereas customer utility increases by λx. Hence, optimal contracts allow as
much production of the customized good x as possible. The only limit to production is
the scale of payment that the customer can afford, as described by the payment feasibility
constraint (1).

3.4. Why the Unit of Account Matters

We would like to examine the implications of our contracting model for the optimal
use of units of account. To see how choosing the wrong unit of account may reduce the
maximal feasible scale of payment and hence welfare, consider a simple example.
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EXAMPLE 1: The customer has a certain endowment y of one unit of good A (and no
endowments of other goods).

If good A is chosen as unit of account—that is, uA = 1—then the maximal scale of
payment that satisfies constraint (1) is q = 1. In this case, the customer can promise the
supplier his entire endowment. Now suppose instead that the unit of account is good B.
With uA = 0 and uB = 1, constraint (1) can be written as

pBq ≤ pA for all pB�pA�

On the left-hand side is the value of the promised payment in the centralized market, and
on the right-hand side is the value of the endowment.

Since the constraint has to hold for all prices, the maximal feasible scale of payment
q(π) is

q = min
p

{
pA

pB

}
�

Given that E(pi) = 1 for all i ∈ {A�B}, the right-hand side cannot be bigger than 1. To
the contrary, if the price of good A relative to good B is ever below 1, then the maximal
feasible scale of payment is below 1 also. The maximal payment will be especially low if
good B is subject to large price spikes (high pB).

The example shows that the underlying problem is relative price risk: the payment is
constrained by the possibility that the price of the goods that constitute the promised
payment is high, whereas the price of the goods that make up the endowment is low. By
choosing the unit of account judiciously, this relative price risk can be hedged. In the
example considered here with a certain endowment in terms of a single good, the price
risk can be hedged perfectly by promising the same good that makes up the endowment.

More generally, even if perfect hedging is not possible, the choice of unit of account
still determines how much can be promised. Consider the following example:

EXAMPLE 2: The customer receives a certain endowment y of one unit of some good
(A or B), but the identity of the good is random.

The customer must now be able to make payment regardless of the identity of the good
he receives. To allow a scale q of 1, the value of the unit of account p′u always would have
to be at least as high as every individual price pi. Since E(pi) = 1 and prices fluctuate,
this is impossible. It follows that the maximal scale of payment is below 1, and hence does
not always exhaust the endowment. The reduction in the scale of the payment is due to
the contracting problem.

3.5. The Optimal Unit of Account

We now state the contracting problem formally and show that it reduces to finding pay-
ments that maximize the scale of payment q(π) subject to feasibility (1). Our approach
is to characterize the Pareto frontier of contracts, subject to the payment feasibility con-
straint and to individual rationality constraints stating that each party is no worse off from
entering the contract. By characterizing the entire Pareto frontier, we do not have to take
a stand on the details of bargaining between the parties and on how potential surplus is
distributed.
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A contract (x�π) is individually rational if the contract makes both parties better off
than autarky. Left on his own, the supplier would get zero utility. The customer would
derive indirect utility from the endowment y, so that the individual rationality constraints
are

US(x�π) ≥ 0� (6)

UC(x�π) ≥E
(
p′y

)
� (7)

We are now ready to provide a formal definition of the optimality of contracts.

DEFINITION 1—Optimality of Bilateral Contracts: A contract (x�π) is (constrained
Pareto) optimal if, for some vS ≥ 0, it maximizes UC(x�π) subject to (1) (i.e., the payment
π is feasible), (6) and (7) (i.e., the contract is individually rational), and US(x�π)= vS .

LEMMA 1—Optimal Contract Maximizes Scale: Any optimal contract (x�π) includes a
payment that maximizes the scale of payment q(π) subject to feasibility (1).

PROOF: From (4), in order to promise the supplier utility US(x�π)= vS , production of
customized goods must be given by x = q(π)− vS . Substituting into the customer’s utility
(5), we obtain

UC(x�π)=E
(
p′y

) + λq(π)− (1 + λ)vS� (8)

which is strictly increasing in q(π). Q.E.D.

Once we know the payment that maximizes q(π) subject to feasibility (1), we can trace
out the entire Pareto frontier. From the individual rationality constraint (7), the cus-
tomer’s utility at an optimal contract (8) must be at least E(p′y). It follows that an optimal
contract can promise the supplier any utility value between zero and v̄S ≡ λq(π)/(1 +λ).
Along the Pareto frontier, the optimal payment π and hence the unit of account are
always the same—all that changes is the production of customized goods. Building on
Lemma 1, we now turn to characterizing the optimal payment as a function of price risk
and endowment risk.

Simple Income Risk

Choosing the payment is easy if there is no endowment risk, that is, if the set Y is a
singleton. The optimal payment is equal to the customer’s certain endowment. Example 1
above considers the case of a certain endowment of a single good. More generally, if the
customer has a certain endowment of both good A and good B, the optimal payment is
the bundle of these two endowments.

The presence of endowment risk may reduce scale for two reasons. First, the scale of the
endowment may be uncertain. Second, the interaction of endowment and price risk may
prevent the customer from promising any payment that ever exhausts the endowment. As
Example 2 above illustrates, this problem can arise even if the scale of the endowment is
certain. We now formally separate the two scenarios and derive their implications for the
optimal payment.

We say that income risk is simple if there is an endowment realization y0 ∈ Y such that,
for all p ∈ P and y ∈ Y , we have p′y0 ≤ p′y. From the feasibility constraint, it is then always
possible and optimal to promise the worst income realization y0 as payment:
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PROPOSITION 1—Optimal Unit of Account With Simple Income Risk:
1. The optimal payment is an element of Y if and only if income risk is simple. In this

case, the optimal payment is given by the worst income endowment realization y0. Conse-
quently, the optimal scale and unit of account of the payment are

q(π)=
∑
i

yi
0�

u(π)= q(π)−1y0�

2. If, in addition, there is price risk for both goods (i.e., there are price realizations pi <
E(pi)= 1 and pi > 1 for all i), the optimal payment is unique.

PROOF: Part 1: Suppose income risk is not simple and consider a candidate payment
π ∈ Y . We then can find a joint price and endowment realization that makes the candi-
date payment more expensive than the endowment, that is, p′π > p′y. It follows that the
candidate payment does not satisfy the feasibility constraint (1) and cannot be optimal.

Now suppose income risk is simple. Setting π = y0 meets the feasibility constraint (1).
To show that y0 is the optimal payment, consider some alternative payment π̃ �= y0 that
yields strictly higher payoff, that is, E(p′π̃) > E(p′y0). Such a payment is not feasible
since it does not satisfy (1) for y = y0 and the price E(p) ∈ P . It follows that π = y0 is
optimal. Q.E.D.

The proof of the uniqueness result in Part 2 of Proposition 1 is contained in Ap-
pendix A.

Consider some examples of simple income risk. Generalizing the case of a certain en-
dowment, income risk is simple if the set Y is a rectangle, that is, Y = {(yA� yB) | yA ∈
[yA� yA]� yB ∈ [yB� yB]}. The key property is that it is possible that both lower bounds yi

are realized together. The restriction is on the support only; there are no assumptions on
the correlation of the yi. With a rectangular endowment set, the worst income realization
is y0 = {yA� yB}. Since only the minimum endowment of each good can be promised, the
result implies that the unit of account will place more weight on goods with less endow-
ment risk.

Income risk can be simple even if the worst-case endowments of all goods cannot be
realized at the same time. For an alternative (non-rectangular) example, consider

Y = {(
yA� yB

) | yA/γ + yB = 1� yA� yB ≥ 0
}
�

The endowment set is a line, with the maximum endowment of good A given by γ and the
maximum endowment of good B given by 1. Let pB denote the largest possible relative
price of good B:

pB = max
p∈P

{
pB

pA

}
�

If γ > pB, then income risk is simple. Indeed, even if the relative price of good B is
maximal, the value of one unit of good B is still lower than that of γ units of good A. The
endowment realization y0 = (0�1) thus delivers the lowest income at any price. In contrast
to the rectangular case, the extent of price risk matters here for whether income risk is
simple. In particular, we need that relative price spikes in good B are small compared to
the relative quantity movements captured by γ.
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General Income Risk

Consider now the general case when there is not necessarily a single worst income
realization that serves as the promised payment. The optimal payment is governed by the
endowment set Y and by the extremes of the distribution of the relative price of A and B.
Let p̄i denote the price vector that achieves the largest relative price of good i,

p̄i = argmax
p∈P

{
pi

pj

}
for j �= i�

and let

mi = min
y∈Y

pi′y

denote the lowest income when the relative price of good i is highest. Since P and Y
are compact, pi and mi exist for i = A�B. We can now characterize the optimal unit of
account in terms of pA, pB, mA, and mB.

PROPOSITION 2—Optimal Unit of Account With General Income Risk: A payment π
that satisfies the conditions

pA′π =mA� (9)

pB′π =mB (10)

has the largest value p′π among all payments that satisfy the feasibility constraint (1) for any
p ∈ P . In particular, it maximizes q(π) and hence is an optimal payment. If, in addition, there
is price risk for both goods (i.e., there are price realizations pi < E(pi) = 1 and pi > 1 for
all i), the optimal payment is unique.

A typical situation is displayed in Figure 1. Here the set Y consists of the two red disks:
the idea is that the customer has one of two technologies, both of which are uncertain and

FIGURE 1.—Determination of optimal unit of account.
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have bounded supports. The upper and lower tangency points represent those elements
of Y that achieve minimal income at the lowest and highest relative price of good B,
respectively. The slopes of the tangent lines reflect those extreme relative prices. The
feasible region is shaded in yellow.

The optimal payment sits at the intersection of the two lines. The optimal payment
maximizes the expected value of the payment. Since the expected prices are all 1, the
isovalue lines slope downwards with a slope of 1, while the lines bounding the feasible set
have slopes given by the two extreme prices. In fact, any price vector that is not one of the
two extreme prices gives rise to isovalue lines with slopes in between the slopes of the two
tangent lines. The optimal payment thus maximizes not only value q(π) at the expected
prices, but also maximizes value at any other feasible price. This is a stronger result than
what is needed to characterize the optimal payment here. It will be useful when we study
general equilibrium below.

In the case of Example 1 (when the customer has a certain endowment of only good
A), the endowment set Y would be a single point on the horizontal axis. This point is
also where the two tangency lines intersect, and hence the optimal payment is equal to
the endowment. Figure 2 displays the case where Y is a rectangle, which is a case of
simple income risk as analyzed in Proposition 1. Given that the slope of the tangent lines
is negative, the intersection and hence the optimal payment is at the lower-left corner of
the rectangle, that is, the worst income realization for both goods.

Proposition 2 has sharp implications for how changes in income or price risk affect the
optimal unit of account. Let π = (πA�πB) be the optimal unit of account given P and
Y . Consider, first, a shift in endowments such that the endowment of good A moves up
by ε > 0 in all states, that is, the new endowment set is Y ′ = {(yA� yB) | (yA − ε� yB) ∈ Y }.
It then follows that the new optimal payment is given by (πA + ε�πB), that is, the extra
endowment is added to the payment, and the weight uA on good A increases accordingly.
This result shows that the optimal unit of account places more weight on goods with
higher endowments. Next, consider a change in the price distribution that increases the
maximum relative price of good A, max{pA/pB}, with no change in the maximum relative
price of good B. The new optimal payment still has to lie on the line given by (10), whereas

FIGURE 2.—Determination of optimal unit of account with rectangular endowment set Y .
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the line given by (9) becomes steeper. If there is a change in the optimal payment, it
therefore has to lie to the left of the original optimal payment on the line defined by (10),
implying that uA decreases and uB increases. This result demonstrates that the optimal
unit of account places less weight on goods subject to larger price spikes.

It is interesting to ask what changes with more than two goods. Proposition 1 readily
generalizes to any finite number of goods. With simple income risk, it is always best to
promise the endowment realization that delivers the lowest income for sure. Even if in-
come risk is not simple, it remains optimal to maximize scale subject to feasibility, as in
Lemma 1. However, the shape of the feasible set in multiple dimensions is more complex.
As long as the optimal payment lies on the boundary of the feasible set, the support of
the price set typically matters for the unit of account.

Suppose, for example, that the convex support of the price distribution has a finite
number of extreme points. We can compute the lowest income for each extreme price,
analogously to the two-good case. Maximizing scale then becomes a linear programming
problem with a finite number of inequality constraints. There is an optimal payment that
is a vertex of the feasible set, with positive components pinned down by a subset of the
hyperplanes defined by the extreme prices.

4. RANDOM MATCHING AND THE OPTIMAL UNIT OF ACCOUNT IN AN ENTIRE ECONOMY

The bilateral contracting problem in the previous section shows why the choice of unit
of account matters and that the optimal unit of account depends on the type of risk faced
by the contracting parties. The results suggest that the distribution of units of account
across contracts observed in an economy depends on the distribution of risk. For example,
if risk differed a lot across relationships, we might expect to observe a rich cross section
of different units of account.

In actual economies, we observe that a dominant unit of account—often, local fiat
money—is used in the majority of contracts. In this section we thus explore mechanisms
that make risk similar across many contracting relationships. To this end, we embed the
bilateral contracting problem into a general equilibrium environment with a large popu-
lation of agents. We emphasize two features that shape the (endogenous) cross section of
risk: gains from forming credit chains and random matching. We show how those features
imply the emergence of a dominant unit of account.

In a credit chain, in which agents are both suppliers and customers, bilateral contracting
relationships are linked in that one customer’s payment is another customer’s income.
As a result, the nature of income risk can propagate across a chain. We show that this
force tends to make the same unit of account optimal throughout a chain. In addition,
sequential random matching implies that contracting parties may not know in advance
who will join them in a credit chain. It then makes sense to choose a unit of account that
is robust to the arrival of many different potential trading partners, and to use that unit
of account in the majority of transactions.

4.1. Agents, Locations, and Matching

We consider a large population of agents of measure 1 who differ along two dimensions.
First, an agent’s location determines his role in the matching process and the potential
gains from trade with others. There are three distinct locations with an equal share of
agents in each location. Every agent in locations 2 and 3 has a technology to make cus-
tomized goods one-for-one from labor for a customer he is matched with; we refer to
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those agents as artisans. Agents in location 1 cannot produce customized goods, but re-
ceive endowments of market goods; we refer to them as farmers.

The geography of the model can be displayed as follows, where the arrow indicates “can
produce for”:

We can envision the locations to correspond to villages along a highway, with the farm-
ers located at the western end of the highway, and artisans further east in villages 2 and
3, where each artisan in village i can produce for customers in village i− 1.

The second dimension of heterogeneity is endowment risk. Every farmer receives a
random endowment y at date 2, but the distribution can differ across agents. There is a
finite number of endowment types θ ∈ Θ. For a farmer of type θ, the endowment is drawn
from a distribution with compact support Y(θ) and conditional mean E(y|θ). Artisans do
not receive an endowment: all their income comes from selling customized goods.

At date 0, every artisan is matched with exactly one customer with whom he can engage
in bilateral contracting. Matching occurs sequentially from east to west in two stages. In
the morning, artisans from locations 2 and 3 meet randomly in pairs. A bilateral contract
between these parties specifies a quantity of customized goods x2 produced by the arti-
san from location 3 in exchange for a payment of tradable goods π2 by the artisan from
location 2. At night, agents from locations 1 (farmers) and 2 (artisans) meet to write a
contract (x1�π1).

As a result of the two-stage matching process, every individual ends up as part of a
chain of three agents each. At the head of each chain is a farmer from location 1 who has
been matched with an artisan from location 2. Each chain also contains an artisan from
location 3 who can produce customized goods for the artisan from location 2. In terms of
technology and gains from trade, chains only differ in the farmer’s endowment type θ. We
thus sometimes refer directly to a chain as being of type θ.

A contract for the economy as a whole assigns a bilateral contract to every meeting.
Sequential matching restricts the information that bilateral contracts can depend on. In
particular, when two agents from locations 2 and 3 meet in the morning, they do not know
the endowment type of the farmer who will join their chain at night. The bilateral contract
(x2�π2) must respect agents’ information and can therefore not condition on the identity
of the farmer in the chain.

4.2. Contracts for the Entire Economy

We denote a contract for the entire economy by (X�Π), where X and Π collect pro-
duction of customized goods and payments in all meetings, respectively. In particular,
given our information structure, a contract consists of a pair (x2�π2) that describes all
bilateral contracts between artisans from locations 2 and 3 determined in the morning, as
well as bilateral contracts (x1(θ)�π1(θ))θ∈Θ between farmers with different endowment
types and artisans from location 2 determined at night.

A key feature of the chain structure is that the feasibility of a payment agreed on be-
tween two artisans in the morning depends on a payment that the artisan in location 2
will receive from a customer whom he has yet not met. For a given economy-wide con-
tract (X�Π), we denote by

Π1(Π) = {
π1(θ)�θ ∈Θ

}
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the set of possible payments that an artisan in location 2 can receive from farmer cus-
tomers in location 1, one of whom he will meet at night.

A contract (X�Π) is feasible if every customer can make payments at every stage along
the chain, whatever the realization of the price and his income:

p′π1(θ) ≤ p′y for all p ∈ P � and y ∈ Y(θ)� (11)

p′π2 ≤ p′π1 for all p ∈ P � and π1 ∈Π1(Π)� (12)

The first condition (11) says that the farmer’s payment is feasible—the constraint is iden-
tical to (1) in the bilateral problem from Section 3. The second condition is payment
feasibility for the artisan in location 2. It takes the same form as for the farmer, but with
the endowment set Y replaced by the set of potential customer payments Π1.

Utility from contracts is as in Section 3, but modified to accommodate that artisans in
location 2 can be customers and suppliers at the same time. After matching is complete
and the type of the chain θ has been realized, an artisan in location 2 expects utility

U2(X�Π;θ) = (1 + λ)x2 + q
(
π1(θ)

) − q(π2)− x1(θ)� (13)

Here x1(θ) is the artisan’s labor effort, and the difference in payment scales is the indirect
utility the artisan receives from tradable goods he keeps for himself rather than pay to his
supplier from location t + 1.

Agents at the beginning and end of a chain engage in only one bilateral contract. Their
utilities are

U1(X�Π;θ) = (1 + λ)x1(θ)− q
(
π1(θ)

) +E
(
p′y|θ)

�
(14)

U3(X�Π)= q(π2)− x2�

The utility of the farmer at location 1 is the same as that of the customer in the bilateral
contract of Section 3; we have only added the farmer type. The utility of the artisan from
location 3 is the same as that of the supplier from Section 3. This artisan’s utility does
not depend on the type of the chain, since the morning contract cannot condition on that
type.

4.3. Optimal Payments and the Unit of Account

As in Section 3, we analyze the optimal use of units of account by characterizing the
Pareto frontier subject to payment feasibility constraints and individual rationality con-
straints. A contract is individually rational if every agent is happy to participate in the
bilateral contracts assigned to all his matches, conditional on information at the stage of
matching. In particular, farmers must be promised utility at least as high as the value of
their endowment:

U1(X�Π;θ) ≥ E
(
p′y|θ)

� (15)

At the same time, artisans in location 3 must be promised at least as much as their outside
option of not working and consuming nothing, that is,

U3(X�Π)≥ 0� (16)

Artisans in location 2 must be encouraged to participate in two bilateral contracts. Con-
sider their options in the morning. Like artisans in location 3, they could decide not to
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work and to consume nothing. In addition, they could also decide to pass on the morning
contract and only engage in a bilateral contract with the farmer whom they meet at night.
The individual rationality constraint in the morning is therefore given by

E
(
U2(X�Π;θ)) ≥ max

{
E

(
q
(
π1(θ)

) − x1(θ)
)
�0

}
� (17)

We take expectations to condition on the artisan’s (lack of) information in the morning,
when the type of the chain is not yet known. The first term in braces is the expected utility
from trading only with the farmer at night.

Consider now the situation of an artisan from location 2 in a night meeting. If he has
made a promise in the morning, he has no way to make payment unless he engages in
trade with the farmer. In contrast, if he has not made any promise in the morning, then
he has the option to pass on the night contract, once he has learned the farmer’s type. We
thus require the additional individual rationality constraint

q
(
π1(θ)

) − x1(θ) ≥ 0 if π2 = 0� (18)

We again solve a planner problem that characterizes constrained Pareto optimal con-
tracts.

DEFINITION 2—Optimality of Economy-Wide Contracts: A contract for an entire
economy (X�Π) is (constrained Pareto) optimal if, for some utilities v1(θ) ≥ E(p′y|θ)
and v3 ≥ 0, it maximizes E(U2(X�Π;θ)) subject to (11) and (12) (i.e., the payments Π are
feasible); (15)–(18) (i.e., the contract is individually rational); and U1(X�Π;θ) = v1(θ)
for all θ ∈ Θ and U3(X�Π;θ) ≥ v3.

In the bilateral contracting problem of Section 3, the optimal payment maximizes the
scale of payment subject to feasibility (Lemma 1). Accordingly, we found that the optimal
unit of account tailors the payment to the set of potential customer endowments (Propo-
sitions 1 and 2). We now show that in the general equilibrium environment here, it is still
optimal to maximize scale in every individual meeting. The new element is that the set
of potential bundles of tradable goods available to the customer depends on his trading
partners. At every stage of matching, the unit of account is thus tailored to the poten-
tial bundles, and this determines how the optimal unit of account propagates through the
economy.

For an arbitrary set of tradable goods bundles Π̃ ⊂ R
2
≥0, we denote by π∗(Π̃) the pay-

ment that maximizes the scale of payment q(π) subject to feasibility, that is, the solution
to the bilateral contracting problem set up in Definition 1 with Y = Π̃ .

PROPOSITION 3—Optimality of Payments in Economy-Wide Contracts: A collection of
payments Π is part of an optimal contract (X�Π) if and only if it maximizes the scale of
payment within each individual meeting, that is:

1. Payments in meetings between farmers of type θ and artisans from location 2 are
π1(θ) = π∗(Y(θ)).

2. The payment in all meetings between artisans from locations 2 and 3 is given by π2 =
π∗(Π1(Π)).

Intuitively, an optimal contract has to accomplish two tasks. First, it should maximize
gains from trade between parties in every bilateral relationship. We know from Section 3
that this task requires maximizing the scale of payment and the production of customized
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goods in individual meetings. Second, in the general equilibrium environment here, the
contract should use payments and production in any one meeting to facilitate gains from
trade in other meetings to the east or west.

The proposition shows that if a payment accomplishes the first task, then it also ac-
complishes the second. In particular, the optimal payments to artisans in night meet-
ings should maximize scale in those meetings only. The payments should not depend on
promises made by those artisans in morning meetings—in fact, they should be as they
would be if no morning meetings had taken place. The result builds on Proposition 2:
since a payment that maximizes scale also maximizes value at any price, it optimally re-
laxes feasibility constraints also in meetings further down the credit chain.

By maximizing scale in every meeting, the contract allows maximal transfer of tradable
goods through the chain from west to east. It thus allows larger payments for customized
goods, which incentivizes more production of these goods. At the same time, maximizing
production of customized goods creates more incentives to work towards the west, which
in turn allows larger payments there.

The proposition allows us to recursively trace the optimal unit of account across the
economy. In night meetings, we observe as many different units as farmer types. Substi-
tuting for Π1(Π) from our knowledge of the night payments, we can write the morning
payment as

π2 =π∗({π∗(Y(θ))� θ ∈ Θ
})
�

The unit of account in morning meetings results from applying the function π∗ twice: first
to each farmer’s endowment support, and then again to the set of optimal bundles that
an artisan from location 2 will possibly receive in night meetings. The dominant unit of
account that is used in all morning meetings is thus designed to be robust to all farmer
types.

We conclude this section by discussing three extensions. First, one could extend the
model to allow for more locations (i.e., additional artisans in location 4, 5, 6 and so on).
Applying the logic of Proposition 3 recursively, it would then be optimal to pass along the
payment received by artisans in location 2 towards the east along the chain. To accomplish
this without further reduction in scale, the same unit of account should be used in all
artisan–artisan matches. A dominant unit of account thus emerges from the combination
of credit chains (where optimal units of account are passed on) with random matching (so
that the same unit of account is used in different chains).

Second, our definition of optimal contracts requires only individual rationality. In an
environment with multiple bilateral meetings, it is also attractive to rule out joint devia-
tions by a pair of agents within a meeting. In Appendix B in the Supplemental Material
(Doepke and Schneider (2017)), we define a notion of coalition proofness for our envi-
ronment and show that an optimal contract satisfies this additional criterion.

Finally, we have assumed that artisans receive no endowment. We describe an extended
environment with risky endowment income for artisans in Appendix C in the Supplemen-
tal Material. The main effect is that additional idiosyncratic endowment income makes
risk less similar across bilateral contracting relationships. Much like with less randomness
in matching (i.e., certain artisans can only meet a subset of farmers), there is less coordi-
nation on a dominant unit of account throughout the economy. It remains the case that
correlation in units of account in the economy is increasing in the length of credit chains
and the degree of random matching.
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4.4. Examples With Specialized Farmers

We now illustrate our results with concrete examples. The simplest possibility is that
there is only one type of farmer who has a certain endowment.

EXAMPLE 3: There is one type of farmer, θ =A, where farmer A has a certain endow-
ment of one unit of good A.

The example features simple income risk in the sense of Proposition 1. Given the propo-
sition, in meetings between a farmer and an artisan from location 2, the optimal payment
is given by π1 = (1�0); that is, the farmer promises the one unit of good A that he is sure
to receive, and no units of good B. As a result, good A serves as the sole unit of account.
Moreover, in morning meetings between artisans from locations 2 and 3, the same pay-
ment π2 = (1�0) is agreed on. The artisans anticipate that the artisan at location 2 will
receive this payment from the contract with the farmer, and hence the scale is maximized
by passing on the same payment.

This simple example illustrates the role of credit chains: the same payment and hence
the same unit of account is passed on throughout the chain. Notice that the artisans from
locations 2 and 3 who meet in the morning neither have an endowment of good A nor
do they derive any special enjoyment from it, yet nevertheless they use it as the sole unit
of account, because they already know that good A will emerge as the dominant unit of
account in their credit chain.

Next, we consider an environment with two types of farmers in a symmetric environ-
ment.

EXAMPLE 4: There are two types of farmers, θ ∈ {A�B}, where farmer A has an en-
dowment of one unit of good A, and farmer B has an endowment of one unit of good B.
Price risk is symmetric in the sense that

p ≡ max
p∈P

{
pA

pB

}
= max

p∈P

{
pB

pA

}
�

Given that each farmer has a certain income, the payment agreed on in meetings be-
tween farmers and artisans is once again straightforward: it is given by the farmer’s en-
dowment of one unit of good A or B. The choice of payment in morning meetings be-
tween artisans from locations 2 and 3 is more complex. The artisans know that artisan 2
will meet a farmer at night, but they do not know if it will be a farmer of type A or B.
Propositions 2 and 3 imply that the optimal payment π should satisfy (9) and (10). In the
example, the conditions simplify to

pπA +πB = 1�

πA +pπB = 1�

resulting in the optimal payment:

π2 =
(

1
1 +p

�
1

1 +p

)
�

Hence, artisan 2 promises an equally weighted bundle of goods A and B, implying that
the unit of account is u = (0�5� 0�5). Intuitively, the worst that could happen is that artisan
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2 meets farmer A, and then the highest relative price for good B is realized. The optimal
bundle is the largest equally weighted bundle that the artisan could afford at this price
after receiving a payment of one unit of good A from the farmer. The proposition demon-
strates another important feature of optimal units of account: if there is uncertainty over
future trading partners, the chosen unit of account should be one that minimizes the vari-
ability of the value of the promised payment relative to the income of the possible trading
partners.

The next example introduces endowment risk for the two farmers.

EXAMPLE 5: There are two types of farmers, θ ∈ {A�B}, where the support of the en-
dowment of type θ is given by an interval [yθ� yθ] of good θ, and zero units of the other
good. Price risk is symmetric as in Example 4 with a maximum price of p of each good
relative to the other.

The farmers’ income risk is once again simple, and Proposition 1 applies: the worst-case
income is given by y

θ
units of good θ regardless of price, and hence farmer θ promises y

θ

units of good θ and zero units of the other good.
Now consider the morning contract between artisans 2 and 3. Artisan 2 knows that later

on, he will either meet A and receive a payment of at least yA of good A, or he will meet
B and receive a payment of at least yB of good B. Let yB ≤ yA. From Propositions 2 and
3, the optimal payment π should satisfy

pπA +πB = yB�

πA +pπB = min
{
yA�pyB

}
�

If pyB ≤ yA, the artisan at location 2 faces simple income risk given by y0 = (0� yB). Hence,
in this case the optimal payment is equal to this worst income realization:

π2 = (
0� yB

)
�

and good B is the sole unit of account in these meetings. Given that the same unit of
account is used in evening meetings of artisan 2 with farmer B, good B becomes the
dominant unit of account: it is used in three out of every four meetings in the economy. If
instead we have pyB > yA, the optimal payment is given by

π2 =
(
pyB − yA

p2 − 1
�
pyA − yB

p2 − 1

)
�

Hence, the optimal payment is a bundle, but the bundle places higher weight on the good
with the lower minimum endowment, so as to hedge against the possibility of meeting a
farmer who produces this good. The scale of the payment is declining in price risk, that is,
the maximum relative price p.

Finally, we consider an example with asymmetric price risk.

EXAMPLE 6: There are two types of farmers, θ ∈ {A�B}, where the support of the en-
dowment of each type θ is given by the same interval [y� y] of good θ, and zero units of
the other good. Price risk is asymmetric with a maximum relative price pθ of each good
relative to the other, with pA �= pB.
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Given that the relationship of farmer and artisan is still characterized by simple income
risk, we proceed directly to the optimal payment between artisans 2 and 3. The conditions
for optimality are

pAπA +πB = y�

πA +pBπB = y�

and the optimal payment is

π2 =
((

pB − 1
)
y

pApB − 1
�

(
pA − 1

)
y

pApB − 1

)
�

Hence, the optimal bundle places more weight on the good with the lower price risk
(lower pθ). The example shows that for given endowment risk, the optimal unit of account
will place more weight on goods that are more stable in value, and hence lead to less
uncertainty about the value of promised payments.

4.5. Optimal Production and the Pareto Frontier

The optimal payment and hence the optimal unit of account are independent of where
on the Pareto frontier the optimal contract is located: it is always beneficial to maximize
the scale of payments in meetings. The weight placed by a social planner on different
agent types only affects the customized goods that those agents receive or produce. The
next proposition shows which utility promises to farmers and artisans in location 3 are
feasible and how the optimal production of customized goods depends on those promises.

PROPOSITION 4—Optimality of Production in Economy-Wide Contracts: An optimal
contract can promise farmers and artisans in location 3 any utilities v1(θ) and v3 that satisfy

λ

1 + λ
q2(π2)≥ v3� (19)

λ

1 + λ
q2(π2)+ λ

(1 + λ)2E
(
q
(
π1(θ)

)) ≥ v3 + 1
(1 + λ)2E

(
v1(θ)− p′y

)
� (20)

The optimal production of customized goods is

x1(θ) = (1 + λ)−1
(
q
(
π1(θ)

) + v1(θ)−E
(
p′y|θ))

� (21)

x2 = q2(π2)− v3� (22)

Condition (20) is equivalent to the requirement that E(U2(X�π;θ)) ≥ 0. The condi-
tion allows us to trace out the entire Pareto frontier by relating the utility of artisans in
location 2 to the utility promised to other types. Up to a scale factor, the utility of arti-
sans in location 2 is equal to the weighted surplus generated by production of customized
goods (the left-hand side) less the weighted utility promises to farmers and artisans in
location 3 (the right-hand side).

The weights multiplying q1 and q2 on the left-hand side indicate the marginal value of
payment capacity in night and morning meetings, respectively. They answer the question:
how much would total surplus increase, if customers in a given meeting were able to
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pay one unit more (say, because of a change in the environment). The marginal value
of payment capacity is λ: if the customer (the farmer) can pay one more unit, then the
supplier (the artisan from location 2) can produce 1 + λ more units of the customized
good.

In contrast, the marginal value of payment capacity in a morning meeting is λ + λ2.
There are λ units of surplus realized in the morning meeting itself: as above, if the cus-
tomer can pay one more unit, then the supplier (the artisan in location 3) can produce
1 +λ more units of the customized good. The additional λ2 units of surplus are due to the
fact that surplus in morning meetings helps generate surplus in night meetings.

The key effect here is that the customized good arranged in the morning meeting serves
as payment to the artisan in location 2. This is valuable, since payment capacity in night
meetings is limited. Specifically, since we have seen that the marginal value of payment ca-
pacity in night meetings is λ, a unit of payment capacity in a morning meeting contributes
λ2 units of surplus generated in night meetings.

By a similar argument, promising one unit of utility to a farmer is cheaper for the social
planner than promising that unit to an artisan in location 3. Any rents obtained by the
latter artisan require shifting resources through the chain for payment without having the
artisan work. To reflect the lower cost, the farmer’s utility promise—net of the farmer’s
outside option of eating his endowment—receives lower weight (1 + λ)−2.

Condition (19) resembles the bound for the supplier’s maximal utility in Section 3. The
promise to an artisan in location 3 is limited by the ability to pay of the customer who
must consume the artisan’s production, measured by q2(π2). Artisans in location 3 can-
not receive more rents than if they were in a bilateral relationship with the farmer who
receives the highest income. It is important here that we allow artisans in location 2 to
choose not to enter the morning contract. If this was prohibited (i.e., the right-hand side
of constraint (17) was zero), promises only would have to satisfy (20).

4.6. Decentralizing the Optimal Contract

So far, we have focused on constrained Pareto optimal allocations. We have character-
ized those allocations as solutions to a social planner problem. Implicitly, the outcome
can be thought of as the planner making a contract proposal to all agents who meet, with
the agents being able to either accept or reject the proposal. In this section, we show that
optimal economy-wide contracts arise as equilibria of another game that involves decen-
tralized interactions between agents in the economy.

The game respects the trading constraints and information structure of the environ-
ment. For strategies and payoffs to be well defined, we need to take a stand on two issues.
The first is negotiation within individual meetings. Here we assume that agents engage
in Nash bargaining with a particular set of weights. In particular, we show below how to
select bargaining weights in different types of meetings in order to decentralize different
points on the Pareto frontier.

The second issue is how contracts are enforced, especially when negotiation in indi-
vidual meetings results in infeasible chains of payment. We make two assumptions. First,
agents have access to a court system that grants limited liability: if an agent has promised
a payment that he cannot make, then he can declare bankruptcy. An agent who declares
bankruptcy does not work or consume and hence receives a payoff of zero. This option is
relevant for artisans in location 2 who take part in two meetings.

The assumption of limited liability is useful because it implies a simple formulation for
the outside options that underlie the Nash bargaining between pairs of agents. Without
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limited liability, we would have to make further assumptions on what happens to agents
who have made a promise, and then encounter an agent who is unwilling to provide them
with a payment needed to meet this promise. Limited liability, however, leads to an addi-
tional issue that needs to be dealt with, namely the possibility that it could lead to strategic
default by artisans. Our second assumption is that there is a regulatory agency which mon-
itors promises and sets an upper limit on payment promises. In particular, we bound the
value of the payment promise at the price vector that minimizes that value—a kind of
stress test on borrowers. For simplicity, we impose this bound only on artisans in loca-
tion 2. While these assumptions are special, they deliver a concept of equilibrium such
that all constrained Pareto optima can be implemented as equilibria of the game.

Limited liability also implies that the decentralization result does not follow directly
from the Pareto-efficiency property of Nash bargaining together with the fact that the op-
timal contract is coalition proof (see Appendix B). In the analysis of coalition proofness,
we assume that agents can only deviate to feasible contracts, which amounts to allowing
the planner to inflict arbitrarily large default costs on agents who promise something in-
feasible. Here we consider a decentralization under weaker and more appealing assump-
tions on contract enforcement that lead to a simple formulation of the outside options
underlying Nash bargaining.

DEFINITION 3—Equilibrium With Bargaining: An equilibrium of an economy with bar-
gaining weights μ3 and (μ1(θ)) and a bound m̄2 on the value promised by artisan 2 consists
of a bilateral contract in morning meetings (x2�π2) as well as bilateral contracts in night
meetings (x1(θ)�π1(θ)) for every history of bilateral contracts determined in morning
meetings such that:

(i) Bilateral contracts in morning meetings are determined by Nash bargaining with
weight μ3 on the artisan from location 3.

(ii) Bilateral contracts in night meetings with farmer type θ are determined by Nash
bargaining with weight μ1(θ) on the farmer.

(iii) If payments negotiated along a chain are infeasible for some price, the artisan in
location 2 neither works nor consumes.

We can now establish our decentralization result.

PROPOSITION 5—Decentralization of Optimal Economy-Wide Contracts: For every col-
lection of possible utility promises v3 and (v1(θ))θ∈Θ, there is a collection of bargaining weights
μ3 and (μ1(θ))θ∈Θ and a bound m̄2 such that the optimal contract given the utility promises
is an equilibrium of the economy with those bargaining weights.

The two assumptions on enforcement ensure that Nash bargaining can be used to ap-
portion the overall surplus across the three types of agents for all constrained-optimal
economy-wide contracts. Limited liability implies that the farmer and the artisan from
location 2 can split surplus generated by production x1(θ) as well as surplus generated by
production x2. The regulatory agency ensures that the artisan in location 2 cannot game
the system given that limited liability is in place. Suppose, for example, that there are two
farmer types, one of whom produces at much higher scale than the other. It might then
make sense for the artisans in a morning meeting to negotiate high production and a pay-
ment that can only be met if the high-scale farmer joins their chain at night. They would
then default on the low-scale farmer who cannot share in surplus.
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5. GOVERNMENT DEBT AND THE CHOICE OF AN OPTIMAL UNIT OF ACCOUNT

The preceding analysis has shown how a dominant unit of account leads to better al-
locations in economies characterized by relative price risk, credit chains, and uncertainty
about future trading partners. However, the optimal unit of account generally turns out
to be a bundle of goods. In actual economies, in contrast, the dominant unit of account
usually consists of government-issued money, such as euros or dollars. In this section, we
explore how our theory can be extended to account for the prominent role of government
paper in real-world units of account.

Our explanation for the use of government-issued money as a common unit of account
builds on the results in Sections 3 and 4: the unit of account should reflect the income risk
of borrowers. Government money enters balance sheets through money-denominated
(i.e., nominal) assets. The most important example of such an asset is nominal govern-
ment debt. Issuing debt in nominal terms has clear advantages for the government; nomi-
nal debt is implicitly state-contingent (through the government’s control of inflation) and
can therefore provide insurance for future government spending shocks (this role of nom-
inal government debt in a stochastic macroeconomic environment was first pointed out
by Bohn (1988)). If a lot of government debt is in circulation, private agents derive more
of their income in nominal terms (through interest payments and principal repayment on
government bonds), which makes money more attractive as a unit of account for private
transactions, too.

To articulate this mechanism within the framework of our model, we build on the sym-
metric Example 4 above. Hence, there are two types of farmers, θ ∈ {A�B}, where farmer
A has an endowment of one unit of good A, and farmer B has an endowment of one unit
of good B. Price risk is symmetric with the maximum price of each good relative to the
other given by p> 0. Let p = 1/p denote the minimum relative price of each good. Into
this environment we introduce a new actor, the government. To focus on government debt
as the optimal unit of account, the only role of the government is to issue IOUs (govern-
ment debt in the form of pieces of paper) and to repay them later on. Specifically, at date
0 (i.e., before price uncertainty has been realized), the government acquires a claim on
g units of each farmer’s output, and in exchange issues g units of government IOUs to
each farmer. A unit of IOU is defined as a claim on one unit of (stochastic) government
revenue T , where the expected value of revenue T in the spot market is E0(T) = 1. Gov-
ernment IOUs are traded in the centralized spot market, and can thus serve as a unit of
account.5

The price of government IOUs is volatile. Specifically, in period 1, after contracts are
written but before the spot market opens, news about government revenue arrives. Since
agents are risk neutral, the expected value of revenue E1(T) pins down the price of IOUs
in the spot market: pIOU = E1(T). To ensure that IOU prices are symmetric with regards
to goods A and B, we maintain the following assumption:

5In physical terms, government revenue T could consist either of bundles of goods A and B or of other
goods that are traded in the centralized market. For the agents in our model, all that matters is the value
of IOUs in the centralized market. Likewise, for determining the optimal unit of account it is immaterial why
IOUs are valued. We choose to anchor the value of IOUs through claims on government revenue for simplicity,
but for a given distribution of the market value of IOUs, alternative ways of founding the value of IOUs (such
as models of valued fiat money) would give the same results.
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ASSUMPTION 2—Symmetric IOU Prices Relative to Goods A and B: The support of the
price distribution for IOUs is given by

pIOU ∈ [
p̂(p)pIOU� p̂(p)pIOU]

�

where

p̂(p)=
((

pA/pB −p

p−p

)
pA +

(
p−pA/pB

p−p

)
pB

)

and

pIOU ≤ p+ 1

2
� (23)

Here pIOU and pIOU give the lower and upper bound of the price of IOUs relative to the
expensive farm good at the two extremes of the relative price of good A and good B.
In addition, condition (23) states that IOU prices are sufficiently variable such that the
relative price of IOUs can be lower than that of an equally weighted bundle of the farm
goods.

In terms of choosing units of account, the central new feature is that a farmer of type
i, rather than deriving all income from farm good i, now derives income partially from
the farm good and partially from the government IOU. Since the expected tax revenue
(and hence the expected value of an IOU) equals 1, this does not change the farmer’s
expected income. However, the presence of government IOUs does change the optimal
unit of account in the economy. As before, in meetings between farmers and artisans and
location 2 the optimal payment consists of the entire endowment of the farmer, in this
case a combination of the farm good and government IOUs. The question is what should
serve as unit of account in morning meetings between artisans from locations 2 and 3.
The following proposition characterizes the optimal unit of account in the economy with
circulating government paper.

PROPOSITION 6: Let the distributions of farm-good and IOU prices satisfy Assumption 2.
Government IOUs in circulation can serve as a unit of account, so that payment promises
from artisans at location 2 to artisans at location 3 are given by

π2 = (
πIOU�πA�πB

)′ = q
(
uIOU�uA�uB

)′

with uIOU + uA + uB = 1, uIOU�uA�uB ≥ 0. We then have:
1. If pIOU >

p+1

2 , the optimal unit of account in all artisan–artisan matches is given by

uIOU = g

g + (1 − g)
2p

p+ 1

≡ ũIOU� (24)

uA = uB = 1 − uIOU

2
� (25)

2. If pIOU ≤ p+1

2 , the optimal unit of account in all artisan–artisan matches is given by
government IOUs, that is, we have uIOU = 1 and payments can be written as

π2 = q(1�0�0)′�
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That is, if the price of IOUs is volatile, the optimal unit of account is a combination of
IOUs and an equally weighted bundle of farm goods, with the weight of IOUs increasing
in the amount g of IOUs in circulation. If the price of government paper is relatively
stable, IOUs are the sole unit of account.

To gain intuition, consider the first case in the proposition, which applies when the price
bounds for IOUs are relatively wide, that is, the value of government debt is volatile.
In this case it is optimal to hedge against the exposure to IOUs by making the weight
of IOUs in the unit of account increasing in the quantity g of IOUs in circulation. The
intuition for using a bundle of both farm goods and IOUs is as in Example 4 above; the
objective is to choose a unit of account for making promises that has a low value in the
“worst-case” price realization; by including all goods in the bundle, the “cheap” good is
always included, which moderates variation in the value of the promise relative to income
received. The weight of IOUs in the optimal bundle is increasing in g to align the value
of the unit of account with the value of income received. In farmer–artisan matches, the
farmer promises g units of IOUs and 1 − g units of farm goods, so that the share of IOUs
in artisans’ income is increasing in g also.

The second case of the proposition shows conditions under which the optimal unit of
account consists solely of IOUs rather than a bundle of goods. Consider the risk that
arises from receiving either farm good A or B as in Example 4 above. The optimal unit
of account should be chosen to have the lowest possible value at the extremes of the
price distribution. An equally weighted bundle of A and B has value (p + 1)/2 relative
to the expensive good when the cheap good is at its lowest relative price. What would
be better is to use a unit of account that has an even lower value when either one of
the farm goods reaches its lowest relative price. If the condition in the second case of
Proposition 6 is satisfied, IOUs are such a good, and are therefore used as the sole unit
of account. Intuitively, the condition can be understood in terms of the volatility of the
price of IOUs. If the upper bound for the relative price of IOUs pIOU is low, the value
of IOUs is relatively stable, which makes IOUs a better unit of account than a bundle of
goods with more volatile value.

It might be the case that condition (23) does not hold, in which case it is possible that
IOUs will not enter the optimal unit of account. However, if we generalize the model
to allow for many farm goods, it is plausible that (23) will hold. The issue here is the
value of an equally weighted bundle of farm goods in the worst-case scenario in terms of
meeting the payment feasibility constraint. In the worst-case scenario, the relative price
of the farm good received will be at the minimum while the relative price of all other farm
goods will be at the maximum, suggesting that the relative price of an equally weighted
bundle of farm goods will be high.

To translate these results into more familiar terms, we can refer to an IOU as a “euro.”
If the euro is the unit of account, the consumer price index is CPI = (pIOU)−1. A high
volatility of the price of euros then translates into a volatile CPI, that is, volatile inflation.
The worst-case scenario that drives the choice of the optimal unit of account is one of a
high pIOU and hence a low CPI. Intuitively, when the euro is the unit of account, artisan 2
promises a fixed number of euros to artisan 3. If now realized inflation is low or negative
(deflation), the real value of that euro-denominated promise is high, possibly leading to
a binding payment feasibility constraint (as in Fisher’s debt-deflation theory). If inflation
becomes too volatile, the euro ultimately is no longer the optimal unit of account. This is
akin to the dollarization of an economy when the local currency becomes overly volatile,
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and alternative units of account (such as foreign currency) start to be used.6 A sudden
spike in pIOU could also be generated by government-mandated changes in the value
of the unit of account, as in the historical sudden deflation episodes analyzed by Velde
(2009).

The analysis provides a rationale for why government-issued money often, but not al-
ways, arises as the dominant unit of account in an economy. In addition to the formal
arguments provided by Proposition 6, another force that favors using government paper
as the unit of account is that using bundles as a unit of account is more complicated than
using a single unit of account. Hence, if there are contracting frictions that favor making
promises in terms of a single unit, using government paper may be optimal even under
the conditions where Proposition 6 would dictate using a bundle of IOUs and farm goods.

6. OPTIMAL CURRENCY AREAS

An important practical issue regarding the use of units of account is the question of
optimal currency areas, that is, under what conditions do multiple regions or countries
have an incentive to adopt a common unit of account? To address this question, we now
modify our model to allow for variation in the intensity of linkages between regions. So
far, we have assumed that matching at each link is entirely random; meetings between
an artisan from location 2 and any given farmer are equally likely. We now add a second
dimension of geography: agents live in two different regions, and are more likely to be
matched to people within their region than to those outside. In this setting, a tension arises
between adopting a “global” unit versus adopting several “regional” units of account that
are more suited to local conditions.7 The analysis therefore leads to a theory of optimal
currency areas, where the optimality of a common unit of account depends on the degree
of specialization across countries and on the intensity of cross-border links.

We once again build on the symmetric Example 4 with two types of farmers, θ ∈ {A�B},
where farmer A has an endowment of one unit of good A, and farmer B has an endow-
ment of one unit of good B. Price risk is symmetric with the maximum price of each good
relative to the other given by p > 1. Differently from Example 4, assume that artisans
are located in two regions, A and B, corresponding to farmers of type A and B. In the
morning, artisans at locations 2 and 3 meet within their region, that is, location-2 artisans
in region A meet location-3 artisans in region A, and the same for region B. At night, an
artisan from location 2 in region A meets a farmer from region A with probability 1 − α,
where 0 ≤ α ≤ 0�5. With probability α he meets a farmer from region B. Similarly, an
artisan from location 2 in region B meets a farmer from his own region with probability
1 − α.

Without further assumptions, as long as α > 0 the optimal unit of account is still as
characterized in the discussion of Example 4, because only the possibility (rather than the
probability) of meeting a “foreigner” matters. Here we enrich the setting by adding the
option that an artisan who is mismatched can pay a “rematching cost” τ > 0 (in utils) to
switch to the other region. Hence, in contracting there is now a choice between writing
contracts so that they are compatible with meeting trading partners from either region, or
writing contracts tailored to trading partners from a particular region, which includes the
necessity of paying the rematching cost if initially mismatched.

6See Neumeyer (1998) for a general equilibrium analysis of the breakdown of trade in nominal assets when
inflation risk becomes too high.

7Related issues arise in the search-theoretic models of Matsuyama, Kiyotaki, and Matsui (1993) and Wright
and Trejos (2001), in which money is used as a medium of exchange.
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We can now show that the optimality of adopting a common unit of account for both
regions depends on the intensity of cross-border trade α. We state the result for a spe-
cific distribution of welfare weights/bargaining power across agents; other welfare weights
would affect the threshold for α above which a unified currency area is optimal, but not
change the basic result.

PROPOSITION 7: Consider the allocation where all bargaining power rests with artisans in
location 2, that is, μ1(θ) = μ3 = 0. If 0 <α ≤ α̃, where

α̃ = (1 + λ)(p− 1)
τ(1 +p)

� (26)

optimal contracts are as in Example 3 (separate units of account in regions A and B), and
mismatched artisans pay the cost τ to match with someone in their own region. If α > α̃, the
solution to the planning problem is as characterized in the discussion of Example 4, that is, an
equally weighted bundle of goods A and B serves as common unit of account in all morning
meetings in both regions, and all agents contract with their initial match rather than paying
the transport cost (i.e., the economy has a common unit of account or a “currency union”).

Hence, we find that the benefits of a currency union increase in the intensity of cross-
border trade α. Moreover, the benefits of a union are also higher (i.e., the threshold for α
is lower) if there is less relative price risk across the regions, that is, if p is closer to 1. This
result mirrors findings in traditional analyses of optimal currency areas (e.g., Alesina and
Barro (2002)) that the benefits of a currency union are higher if the members experience
correlated shocks. Notice, however, that the mechanism is entirely different: whereas tra-
ditional models emphasize the potential benefits of independent macroeconomic policy,
in our theory the tradeoff in adopting a currency union involves risk exposures in contracts
among private parties. Another distinct implication of our theory is that the benefits of
a currency union are increasing in the length of credit chains. Consider a simple exten-
sion of the setup in which the probability α of meeting someone from the other region
applies, separately, to each level of the chain of artisans. This implies that as the number
of locations increases, for a given α there is an increase in the probability that each credit
chain contains at least one agent from the other region. Thus, for fixed α the benefits of a
currency union are increasing in the number of locations.

7. CONCLUSIONS

Our goal in this paper was to provide a rationale for why a dominant unit of account
might emerge and what it should look like. We start from a bilateral contracting problem
with relative price risk and a cost of breaking promises. The unit of account for promises
then matters and should track borrower income. In a general equilibrium environment,
a dominant unit emerges when there are gains of trade along credit chains and random
matching with business partners. This dominant unit no longer tracks individual borrower
income, since it must address both price risk and matching risk. It should therefore be
stable in value relative to the income of many borrowers.

Our analysis suggests a number of interesting avenues for future research. One is to
study the choice of unit of account in more specific contexts. We have considered a fairly
abstract environment in order to isolate forces that are relevant in many settings where
price and matching risk are present. In particular applications—such as the choice of



1566 M. DOEPKE AND M. SCHNEIDER

currency for invoicing in international trade or the choice of debt denomination in in-
ternational banking—additional forces may emerge. For example, if borrowing requires
collateral, the exposure of collateral to relative price risk becomes an issue. If some gains
from trade are due to risk sharing, then relative risk attitudes matter. Finally, in some
trading networks the balance-sheet risks that are central to our theory are highly concen-
trated among intermediaries such as banks.8

A second direction for further theoretical research is to explore dynamics. We have
considered a static setup and derived comparative statics predictions for the optimal unit
of account. At the same time, the mechanism we emphasize is relevant also in a dynamic
setup where shocks alter the properties of potential units of accounts. For example, in the
presence of many bilateral long-term contracts, it may be difficult for society to quickly
change the dominant unit of account. The ability to switch units is relevant for under-
standing the response of an economy that uses government debt as its unit of account to a
new policy regime with less stable value. At what point do agents start indexing contracts
or use a foreign currency such as the dollar?

Finally, an important challenge for future research is to more formally confront the
implications of the theory with empirical evidence. One approach here is to exploit time
series variation, as we loosely did in our discussion of historical evidence above. Over
long periods of time, it is plausible that the unit of account adapts to changes in the
environment, such as the intensity of international trade, the size of the government, or
the ability of the government to commit to a stable value of debt. At the same time, it is
interesting to consider predictions on the cross section of contracts and individual balance
sheets that can be matched to new micro data sets on credit markets and international
trade relationships.

APPENDIX A: PROOFS FOR PROPOSITIONS

PROOF OF PROPOSITION 1: The proof for Part 1 is contained in the main text. Now
consider Part 2 regarding uniqueness. Suppose there is a payment π̃ �= y0 that yields the
same payoff, E(p′π̃)= E(p′y0). Given that the promised payment is different from y0 yet
yields the same utility, there must be one good i for which π̃ promises strictly more than
yi

0, whereas for the other good j, π̃ promises strictly less than y
j
0. Now consider a price

vector p̃ that has p̃i = E(pi) − ε1 = 1 − ε1 and p̃j = E(pi) + ε1 = 1 + ε2, with ε1� ε2 > 0
and p̃′y0 = E(p′y0). Such a price vector exists in P for small enough ε1� ε2 because of the
assumed price risk in both goods and the convexity of P . Now if p̃ and y0 are realized, we
have p̃′π̃ > p̃′y0. Hence, any such π̃ violates feasibility (1), implying that setting π = y0 is
the unique optimum. Q.E.D.

PROOF OF PROPOSITION 2: We show first that a bundle is feasible if and only if it satis-
fies p̄i′π ≤ mi for i ∈ {A�B}. The inequalities are necessary for feasibility, because there
exist y ∈ Y that attain incomes mA and mB, and the optimal payment π has to satisfy (1)
for any y ∈ Y , p ∈ P .

8Our analysis has also abstracted from possible connections between the roles of money as a unit of account
and as a medium of exchange. Indeed, in our theory all units of account are traded in Walrasian spot markets.
While this is useful to analyze the demand for pure accounting currencies, future research could also explore
settings where a connection between the different functions is natural, such as the design of clearing and
settlement systems for asset market trade.
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We also need to show that the inequalities are sufficient for feasibility. Consider a bun-
dle that satisfies the inequalities and consider any other endowment y ∈ Y . From the
definition of mA and mB, we know that p̄A′π ≤ p̄A′y and p̄B′π ≤ p̄B′y.

Consider any other price p ∈ P . Suppose πA ≥ yA. Since p̄A maximizes the relative
price of good A and p̄A′π ≤ p̄A′y, we must have p′π ≤ p′y. Now suppose instead that
πA < yA. Since p̄B minimizes the relative price of good A and p̄B′π ≤ p̄B′y, we must have
p′π ≤ p′y.

Now consider the equations (9) and (10). If there is price risk as stated in the propo-
sition, the matrix on the left-hand side is nonsingular, so there is a unique solution π0.
The solution is feasible since it satisfies the inequalities. To show that it is optimal, con-
sider any other feasible π �= π0. By construction of π0, we know that p̄A′π ≤ p̄A′π0 and
p̄B′π ≤ p̄B′π0.

Consider any other price p ∈ P with p �= p̄A and p �= p̄B. Suppose πA ≥ πA
0 . Since p̄A is

the unique maximizer of the relative price of good A, we must have p′π < p′π0. Suppose
instead πA < yA. Since p̄B is the unique minimizer of the relative price of good B and
p̄B′π ≤ p̄B′π0, we must have p′π < p′π0. We conclude that the bundle π0 is the unique
bundle that maximizes the value p′π subject to (1). Q.E.D.

PROOF OF PROPOSITION 3: (Necessity) We show first that an optimal contract maxi-
mizes the scale of payment within each individual meeting. If there is no optimal contract
for given v1(θ) and v3, then there is nothing to show. Suppose then that an optimal con-
tract exists.

We want to show that an optimal contract (X�Π) satisfies π1(θ) = π∗(Y(θ)) for all
θ ∈ Θ. Suppose that π1(θ) �= π∗(Y(θ)) for some θ. Since π∗(Y(θ)) maximizes scale for
the endowment set Y(θ), we know that �q = q(π∗(Y(θ))) − q(π1(θ)) > 0. Consider an
alternative contract that makes farmer θ pay π∗(Y(θ)) and leaves all other payments
unchanged.

From (14), we can reduce x1(θ) by �q(1 + λ)−1 and leave the utility of farmer θ un-
changed. At the same time, we strictly increase the expected utility of the artisan in loca-
tion 2, which is our objective function.

The alternative contract is feasible. Indeed, it satisfies farmer feasibility constraints by
construction. Moreover, Proposition 2 says that the payment π∗(Y(θ)) maximizes the
value p′π among all feasible bundles for any price p ∈ P . It follows that the feasibility
constraint of the artisan in location 2 still allows the original payment π2.

Since the alternative contract does not change the payment of artisan 2, we can re-
tain the same production x2 and leave the individual rationality constraint of artisan 3
unchanged.

Given the original production x2, the alternative contract also satisfies the individ-
ual rationality constraints of artisan 2. Indeed, from (13), a contract satisfies the indi-
vidual rationality constraint (17) of artisan 2 if and only if we have E(U2(X�Π;θ)) ≥
0 and (1 + λ)x2 − q(π2) ≥ 0. The expected utility of artisan 2 strictly increases so
E(U2(X�Π;θ)) > 0. The second condition continues to hold since π2 and x2 are un-
changed from the original contract which was optimal. Finally, since the alternative con-
tract changes the component of artisan 2 utility that is due to trade with the farmer, (18)
also continues to hold.

We can also retain production x1(θ̃) for all farmers θ̃ �= θ and leave those farmers’
constraints unchanged. In sum, we have constructed an alternative contract that satisfies
all constraints and achieves a strictly higher objective than the original optimal contract,
a contradiction. We conclude that an optimal contract satisfies π1(θ) =π∗(Y(θ)).
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We now show that an optimal contract satisfies π2 = π∗(Π1(Π)). Suppose that π2 �=
Π1(Π). Since π∗(Π1(Π)) maximizes scale for the endowment set Π1(Π), we know that
�q = q(π∗(Π1(Π))) − q(π2) > 0. Consider an alternative contract that makes artisan 2
pay π∗(Π1(θ)) and leaves all other payments unchanged.

From (14), we can increase x2 by �q(1 + λ)−1 and leave the utility of artisan 3 un-
changed. At the same time, we strictly increase the expected utility of the artisan in loca-
tion 2 and in particular its component (1 + λ)x2 − q(π2). From (13) and (17), the alter-
native contract satisfies the individual rationality constraint of the artisan in location 2. It
also strictly increases the objective function.

The alternative contract is feasible since the payment of artisan 2 is feasible by con-
struction and changes to the contract assigned to morning meetings do not affect any
feasibility constraints for night meetings. We again have a contradiction and conclude
that an optimal contract satisfies π2 =π∗(Π1(Π)).

(Sufficiency) We now show that every collection of payments that maximizes the scale
of payment within each individual meeting is part of a contract (X�Π) that is optimal for
some promised utilities v3 and v1(θ).

Consider a candidate contract that maximizes the scale of payments in individual meet-
ings. We first show that we can find a production X and promised utilities such that the
candidate contract satisfies all constraints of the optimization problem. We then show that
there is no other contract that satisfies all constraints and yields higher payoff.

The payments from Part 1 satisfy the feasibility constraints (12). Fix v3 and v1(θ) and
use (14) to choose production of customized goods X:

x1(θ) = (1 + λ)−1
(
v1(θ)+ q

(
π1(θ)

) −E
(
p′y|θ))

�

x2 = q(π2)− v3�

Expected utility for an artisan in location 2 from the candidate contract is therefore

E
(
U2(X�Π;θ))

= λEq(π2)− (1 + λ)v3 + λ

1 + λ
E

[
q
(
π1(θ)

)] − (1 + λ)−1E
(
v1(θ)− p′y

)
�

From (13), a contract (X�Π) satisfies the individual rationality constraint (17) if and only
if E(U2(X�Π;θ)) ≥ 0 and (1 + λ)x2 − q(π2)≥ 0. Substituting, we obtain

λ

1 + λ
q(π2)≥ v3�

(27)
λ

1 + λ
q(π2)+ λ

(1 + λ)2E
(
q
(
π1(θ)

)) ≥ v3 + 1
(1 + λ)2E

(
v1(θ)− p′y

)
�

The conditions are satisfied, for example, for v3 = 0 and v1(θ) = E(p′y|θ). Moreover, the
candidate contract has π2 = 0 only in the degenerate case where all endowments are zero
for sure, in which case q(π1(θ)) = x1(θ) = 0. The candidate contract thus satisfies the
individual rationality constraint (18).

We have shown that the contract satisfies all constraints for some v1(θ) and v3. To
show that it is optimal, suppose that there is some alternative feasible and individually
rational contract (X̃� Π̃) that yields strictly higher expected utility for the artisan in lo-
cation 2 while keeping all other agents’ utility levels the same. Suppose that alternative
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contract assigns different bilateral contracts to meetings between artisans from location 2
and farmers of types θ ∈ Θ̃ ⊂Θ.

The payment π∗(Y(θ)) is part of any constrained Pareto optimal contract in any such
meetings. Since farmer utility is held fixed, it must be that expected utility of an artisan 2
from trade with farmers E(q(π̃1(θ)) − x̃1(θ)) is less or equal than under the candidate
contract.

It follows that expected utility from trade with artisan 3, (1 + λ)x2 − q(π2), is strictly
higher under the alternative contract. However, from (14) this is impossible, since we
have assumed that artisan 3 utility is the same for both contracts. We conclude that the
candidate contract is indeed optimal. Q.E.D.

PROOF OF PROPOSITION 4: The previous proposition states that any optimal contract
maximizes the scale of payment in each individual meeting. The proof of that implication
(labeled “sufficiency” in the proof above) shows that any contract that maximizes the scale
of payment in each individual meeting and also delivers utility promises v3 and v1(θ) must
prescribe production (21)–(22) and must satisfy conditions (19)–(20). Q.E.D.

PROOF OF PROPOSITION 5: We proceed by backward induction. Consider first night
meetings between farmers of type θ and artisans from location 2 for a given contract
(x̃2� π̃2) negotiated in the morning meeting. We restrict attention to histories such that
π̃2 = 0 implies x̃2 = 0. Any other history would have the artisan in location 3 work for
free, which cannot happen in equilibrium.

Consider utilities if the outcome of night bargaining is (x̃1� π̃1). If the chain of pay-
ments is infeasible (i.e., p′π̃1 ≥ p′π̃2), then the artisan receives zero and the farmer re-
ceives E(p′y|θ). Otherwise, the utilities of the farmer and artisan are (1 +λ)x̃1 −q(π̃1)+
E(p′y|θ) and

(1 + λ)x̃2 + q(π̃1)− q(π̃2)− x̃1�

respectively. The outside option of the farmer is E(p′y), whereas the outside option of
the artisan is zero. To maximize joint surplus, the farmer and artisan want to maximize
scale q(π̃1) subject to feasibility, that is, they want to choose π̃1 = π1(θ), the payment
prescribed by any optimal contract.

We now choose the weights μ1(θ) so that farmer θ’s share of surplus at the optimal
payments π2 and π1(θ) is exactly v1(θ):

μ1(θ) = v1(θ)−E
(
p′y|θ)

λq(π2)+ λ

1 + λ
q
(
π1(θ)

) + v1(θ)−E
(
p′y|θ) �

It follows that artisan’s equilibrium production given morning contract (x̃2� π̃2) is

x∗
1(x̃2� π̃2� θ)= 1

1 + λ
μ1(θ)

(
(1 + λ)x̃2 − q(π̃2)

) + (
1 +μ1(θ)λ

)
q
(
π1(θ)

)
�

Consider, next, bargaining in morning meetings. If the outcome of morning bargaining is
(x̃2� π̃2), the utilities of the artisans from locations 3 and 2 are q(π̃2)− x̃2 and

(1 + λ)x̃2 +E
(
q
(
π1(θ)

)) − q(π̃2)−E
(
x∗

1(x̃2� π̃2� θ)
)

=
(

1 − E
(
μ1(θ)

)
1 + λ

)(
(1 + λ)x̃2 − q(π̃2)

) + λ

1 + λ
E

((
1 −μ1(θ)

)
q
(
π1(θ)

))
�
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respectively. The outside option of artisan 3 is zero, and the outside option of artisan 2 is

λ

1 + λ
E

((
1 −μ1(θ)

)
q
(
π1(θ)

))
�

Since an optimal contract maximizes scale and allows promises v1(θ), joint surplus in a
morning meeting with π̃2 =π2 is positive.

If we further set m̄2 = minp∈P p′π2, then there is no other bilateral contract (x̃2� π̃2) that
delivers more surplus. Indeed, promising a larger payment π̃2 is precluded by the bound.
Promising lower payment reduces beneficial production of customized goods.

It follows that the optimal scale of payment in morning meetings is π2 . We can select
the weight μ3 so the share of surplus going to the artisan in location 3 at the optimal
payment π2 is v3:

μ3 = v3

v3 +
(

1 − E
(
μ1(θ)

)
1 + λ

)(
λq(π2)− v3

) + λ

1 + λ
E

((
1 −μ1(θ)

)
q
(
π1(θ)

)) �

The production of customized goods follows as x2 = q(π2)− v3. Q.E.D.

PROOF OF PROPOSITION 6: Following the same reasoning as in the proof of Proposi-
tion 1, in matches between farmers and artisans at location 2 it is optimal to choose the
unit of account such that the entire income of the farmer can be passed on to 2. Thus, if
artisan 1 meets farmer i ∈ {A�B}, artisan 1 will receive a payment consisting of g units of
government IOUs and 1−g units of farm good i. For the reasons articulated in Section 4,
it will also be optimal to use a common unit of account in all artisan–artisan matches. As
in the proof of Proposition 2, this dominant unit of account should be chosen to maximize
the payment that can be passed on from location-2 artisans to other artisans. Proposi-
tion 2 is not directly applicable here, because there are now three goods that can serve as
unit of account. We can state the problem of choosing the optimal unit of account as

{
uIOU�uA�uB

} = argmax
uA�uB�uIOU

{
min

i�p�pIOU

{
gpIOU + (1 − g)pi

uIOUpIOU + uApA + uBpB

}}

subject to uIOU + uA + uB = 1 and uIOU�uA�uB ≥ 0. What is being maximized is the min-
imum of the value of the income of an artisan at location 2 (numerator) relative to the
value of the unit of account (denominator), where the index i ∈ {A�B} denotes the iden-
tity of the farmer that the artisan meets. Given the symmetric price distribution for goods
A and B, it is optimal to set

uA = uB = 1 − uIOU

2
�

The worst-case price realization for p is that the relative price of good i is at the minimum.
We therefore have

min
i�p�pIOU

{
gpIOU + (1 − g)pi

uIOUpIOU + uApA + uBpB

}

= min
pIOU

{
gpIOU/max

{
pA�pB

} + (1 − g)p

uIOUpIOU/max
{
pA�pB

} + (
1 − uIOU

)p+ 1

2

}
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gpIOU + (1 − g)p

uIOUpIOU + (
1 − uIOU

)p+ 1

2

if uIOU > ũIOU�

g + (1 − g)
2p

p+ 1
if uIOU = ũIOU�

gpIOU + (1 − g)p

uIOUpIOU + (
1 − uIOU

)p+ 1

2

if uIOU < ũIOU�

where ũIOU is defined in (24), and in the second line we divide both numerator and de-
nominator by the price of the more expensive farm good.

Now notice that for pIOU fixed, the expression on the right-hand side is monotonic in
uIOU. Hence, if it is optimal to set uIOU > ũIOU, the best choice is uIOU = 1, and similarly if
uIOU < ũIOU is optimal, the best choice is uIOU = 0. Setting uIOU = 0 would be better than
uIOU = ũIOU if the inequality

gpIOU + (1 − g)p

p+ 1

2

> g + (1 − g)
2p

p+ 1

held, which can be simplified to

pIOU ≥ p+ 1

2
�

which is ruled out by condition (23). Similarly, uIOU = 1 is better than uIOU = ũIOU if the
inequality

gpIOU + (1 − g)p

pIOU ≥ g + (1 − g)
2p

p+ 1

holds, which can be solved for

pIOU ≤ p+ 1

2
�

which is the condition stated in the proposition. Q.E.D.

PROOF OF PROPOSITION 7: Given the symmetric environment, in the optimal alloca-
tion either all mismatched agents pay the transport cost, or none of them do. The resulting
environments (after potentially paying the transport cost) are as characterized in the dis-
cussion of Example 3 if the cost is paid (i.e., matching only within regions, or “separate
currencies”) or in the discussion of Example 4 if not (matching across regions, or “cur-
rency union”). Comparing the optimal allocations, we see that (apart from the transport
cost) the only difference in terms of overall welfare is the consumption of the artisanal
good by artisans of type 2. This is because given assumed welfare weights farmers and
artisans at location 3 are at reservation utility, the production of location-2 artisans is
independent of the regime, and location-2 artisans only consume artisanal goods in the
optimal allocation. If the transport cost is paid and all agents match within their region
(separate currencies), the optimal payment from artisan 2 to 3 in region θ is the one unit
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of the farm good θ that 2 receives from the farmer. The individual rationality constraint
of artisan 3 then implies that we have

xSEPARATE
1 = 1�

Under the alternative of a currency union, as in Example 4 the optimal payment from 2
to 3 is π2 = ( 1

1+p
� 1

1+p
). The individual rationality constraint of artisan 3 then gives

xUNION
1 = 2

1 +p
�

That is, in the currency union the scale of production is reduced to ensure that payments
can be made even if matching outside the home region. Taking into account that under
separate currencies, avoiding matching with the other region involves paying the transport
cost τ with probability α, welfare is higher when there is matching across regions (and,
hence, there is a currency union) if

(1 + λ)xUNION
1 ≥ (1 + λ)xSEPARATE

1 − ατ

or

α ≥ (1 + λ)(p− 1)
τ(1 +p)

≡ α̃�

which is the condition given in the proposition. Q.E.D.
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