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Abstract. I compare the predictions of three variants of the altruistic parent
model of Barro and Becker for the relationship between child mortality and
fertility. In the baseline model fertility choice is continuous, and there is no
uncertainty over the number of surviving children. The baseline model is
contrasted to an extension with discrete fertility choice and stochastic mor-
tality and a setup with sequential fertility choice. The quantitative predictions
of the models are remarkably similar. While in each model the total fertility
rate falls as child mortality declines, the number of surviving children in-
creases. The results suggest that factors other than declining infant and child
mortality are responsible for the large decline in net reproduction rates ob-
served in industrialized countries over the last century.
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1. Introduction

In 1861, the average woman in England had five children over her lifetime.
However, only 70 percent of newborn children would live to see their tenth
birthday. By 1951, average fertility had fallen to just over two children per
woman, and only five percent of children would die in their first ten years of
life. A similar pattern of declining fertility and mortality rates, collectively
known as the demographic transition, has been observed in every industri-
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alizing country. Recently, a number of economists have developed macro-
economic theories that integrate an account of the demographic transition
with theories of long-run economic growth. However, in most cases these
studies have concentrated on the fertility aspect of the demographic transition,
while abstracting from mortality decline (see, for example, Galor and Weil
2000, Greenwood and Seshadri 2002). Demographers, in contrast, have
pointed out that in many countries mortality decline preceded fertility decline,
which suggests a causal link from falling mortality to falling fertility.

One reason why the macroeconomic literature has abstracted from mor-
tality decline as a cause for fertility decline is that commonly used economic
models of fertility choice are inconsistent with such a link. In particular, this
is true for the model of Barro and Becker (1989), where parents are altruistic
towards their surviving children. In the Barro-Becker model, infant and child
mortality rates affect choices only to the degree that they influence the overall
cost of a surviving child. Falling mortality rates lower the cost of having a
surviving child, hence net fertility1 actually increases, not decreases, as
mortality declines (this is discussed in Boldrin and Jones 2002; Fernández-
Villaverde 2001). The effects of falling adult mortality are more ambiguous
(see Boucekkine et al. 2002), but changing adult mortality is an unattractive
explanation for fertility decline for other reasons. Most gains in adult survival
rates are not closely associated with the timing of fertility decline, and most of
overall mortality decline occurs at the levels of infant and child mortality.
Instead of emphasizing mortality decline, the Barro-Becker framework points
to the quantity-quality tradeoff as an explanation for fertility decline: parents
choose to have smaller families in order to invest more in the education of
each child.

In this paper, I examine whether simple extensions of the Barro-Becker
model can overturn its predictions for the link of child mortality and fertility.
In the baseline Barro-Becker model, fertility is treated as a continuous choice,
all fertility decisions are made at one point in time, and there is no uncertainty
over the number of surviving children. Richer models that allow for uncer-
tainty and sequential fertility choice may lead to different implications. In
particular, when mortality is stochastic and parents want to avoid the pos-
sibility of ending up with very few (or zero) surviving children, a precau-
tionary demand for children arises. Such an increase in fertility in response to
expected future child mortality is also known as the ‘‘hoarding’’ effect. Sah
(1991) and Kalemli-Ozcan (2003) argue that when hoarding is taken into
account, declining child mortality can have a strong negative impact on fer-
tility.2 If fertility is chosen sequentially, there is also a ‘‘replacement’’ effect:
parents may condition their fertility decisions on the survival of children that
were born previously. Fertility models with stochastic outcomes and
sequential choices have been used in the empirical fertility literature, see
Wolpin (1997), but their theoretical and quantitative implications within the
Barro-Becker framework have not yet been examined.

To analyze whether stochastic outcomes and sequential fertility choice are
quantitatively important, I examine three extensions of the basic Barro-
Becker framework. The first model allows for different costs per birth and per
surviving child, but is otherwise identical to the Barro-Becker setup. In the
second model, fertility choice is restricted to be an integer, and there is
mortality risk. The third extension adds sequential fertility choice. The three
models are compared with regards to their theoretical and quantitative
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implications regarding the link between infant and child mortality and fer-
tility.

The main conclusion is twofold: all three models are consistent with a
falling total fertility rate in response to declining child mortality, but none of
the models predicts that the net fertility rate declines. In the data, in most
countries both total and net fertility decline substantially during the demo-
graphic transition. In the English example, the total fertility rate fell from 4.9
in 1861 to 2.1 in 1951, while the net fertility rate (the average number of
children per woman surviving at least to age 5) declined from 3.6 to 2.0.
Given these observations, our analysis suggests that lower child mortality did
contribute to the decline of the total fertility rates, but that other factors must
be behind the decline in net fertility.

To gain some intuition for these results, once again it is useful to distin-
guish between the hoarding and replacement responses to child mortality.
Replacement behavior alone is sufficient to generate a positive relationship
between child mortality and total fertility. Consider, as a simple example, a
parent who wants to implement a certain target in terms of the desired
number of surviving children. If fertility choice is sequential, the parent can
implement this target precisely by having a sufficient number of births until
the target is reached and adding another birth each time a child dies. The
number of surviving children is always equal to the target, and therefore
independent of mortality rates. The total fertility rate, on the other hand, is
positively related to mortality: the more deaths occur, the more ‘‘replace-
ment’’ births are going to take place. If child mortality declines, fewer chil-
dren need to be replaced, so that the total fertility rate declines as well.

For mortality decline to have a negative effect on net fertility, the hoarding
motive has to be present. That is, instead of just retroactively replacing children
that died, parents would have to raise their fertility level in advance as an
insurance mechanism against the future death of some of their children. A
decline in child mortality will translate into a decline in net fertility only if the
hoarding motive is sufficiently strong. We will see that, theoretically, such a
response can indeed arise if it is impossible to replace dying children, and if
parents are extremely risk averse with regards to to the possibility of having too
few surviving children. The hoarding motive is counteracted, however, by risk
aversion with respect to consumption and by the possibility of sequential fer-
tility choice. We will show below that once sequential fertility choice is allowed
for, hoarding behavior does not arise even if parents are highly risk averse.

The following section introduces the three models that form the basis of
the analysis. Section 3 theoretically analyzes the link between child mortality
and fertility in these models. The theoretical results are complemented in Sect.
4 with quantitative findings from a calibrated model, and a sensitivity analysis
is carried out in Sect. 5. In Sect. 6, the results are contrasted to the empirical
literature on the fertility-mortality link. An extension of the model that
introduces endogenous education decisions is presented in Sect. 7. Section 8
concludes.

2. Three variations on altruistic parents and fertility

As the benchmark case, I consider the model by Barro and Becker (1989) with
continuous fertility choice and separate costs per birth and per surviving
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child. In this model, parents care about their own consumption c as well as
the number n and utility V of their surviving children.3 The utility function is:

Uðc; nÞ ¼ c1�r

1� r
þ bn�V :

Throughout the paper, it is assumed that r; b; � 2 ð0; 1Þ and V > 0. The
deterministic model can be extended to risk-aversion parameters equal to one
(log utility) or bigger than one. However, in those cases the utility associated
with having zero children is negative infinity, so that the choice problem
under uncertainty (where zero surviving children occur with positive
probability) is not well defined. I therefore concentrate on the case 0 < r < 1.

Let b denote the number of births, and s is the probability of survival for
each child, where 0 < s � 1. Mortality is deterministic in the sense that s is the
fraction of children surviving. Consequently, the number of surviving chil-
dren is not constrained to be an integer. The full income of a parent is
denoted by w. Since w is taken as given, the distinction between time and
goods costs for children is irrelevant. It is assumed that each birth is asso-
ciated with a cost of p, and each surviving child entails an additional cost of q.
The budget constraint is then cþ pbþ qn � w or, after plugging in the sur-
vival function n ¼ sb:

cþ ðp þ qsÞb � w:

Income and cost parameters satisfy w > 0, p � 0, q � 0, and p þ q > 0. At
least one of the costs has to be strictly positive; otherwise, the optimal fertility
choice is infinity. Both consumption and fertility are restricted to be
nonnegative. The decision problem in the standard version of the Barro-
Becker model is:

Model A: (Barro-Becker with continuous fertility choice)

max
0�b�w=ðpþqsÞ

ðw� ðp þ qsÞbÞ1�r

1� r
þ bðsbÞ�V :

( )

I will now consider two further variations of the Barro-Becker framework
which add realism to the benchmark model. The first extension introduces
stochastic survival and restricts fertility choice to be an integer. In this model,
the realized number of children is uncertain. I assume that for each birth there
is a constant probability of death, implying that the distribution of surviving
children is Binomial. Apart from the integer restriction and stochastic
survival, the model is identical to the benchmark. The decision problem is
now given by:

Model B: (Stochastic Barro-Becker with discrete fertility choice)

max
b2fN[0g; b�w=ðpþqÞ

Xb

n¼0

ðw� pb� qnÞ1�r

1� r
þ bn�V

 !
b
n

� �
snð1� sÞb�n

( )
:

The second extension adds yet more realism by allowing sequential fertility
choice, while preserving the integer constraint and stochastic survival of
Problem B. In the sequential model, the period is divided into T þ 1
subperiods, running from 0 to T . Parents have a fixed income of w in each
subperiod. The parameter c 2 ð0; 1Þ is the discount factor between periods.
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In each period, parents can give birth to a single child. Since children live for
multiple periods, the setup allows to distinguish infant and child mortality.
Newborn infants survive with probability si until the next period. If the child
survives, the probability of surviving the second period of life is sy . Once a
child has survived for two periods, it will survive until adulthood for sure.4

bt 2 f0; 1g denotes the birth decision in period t, yt 2 f0; 1g represents a
young child (born in the preceding period), and nt is the number of older
children (born at least two periods prior) alive in period t. The cost per birth
bt is given by p, a young child yt is associated with cost q, and older children nt
do not involve further expenses.5 The budget constraint in period t is
ct þ pbt þ qyt � w.

In the sequential model, parents are able to decide on fertility condi-
tional on the survival of older children. Formally, the choice object of the
parent is a sequence of decision rules fbt : Ht ! f0; 1ggT

t¼0 which map the
state ht at time t into a birth decision. The state at time t is given by
ht ¼ fnt; ytg, where nt � 0 is the number of children that were born at least
two periods ago and survived, and yt 2 f0; 1g denotes whether there is a
young child that was born in the preceding period. Since there is at most
one birth per period, the maximum number of children is K. The state space
is therefore Ht ¼ f0; 1; . . . ;Kg � f0; 1g.

A parent is fecund only until period K, which imposes the additional
constraint bt ¼ 0 for K < t � T . This constraint is imposed to provide a
motive for ‘‘hoarding’’ of children. If a child dies after period K, it cannot be
replaced. The evolution of the number of children depends on the number of
older children nt, on whether there is a newborn bt and a young child yt, and
on the survival probabilities. Specifically, for a parent that has nt older
children today, the probability of having nt þ 1 tomorrow is zero when there
is no young child and sy if a young child exists. Similarly, the probability of
having a young child yt in the next period is si if there is a newborn in this
period, and zero otherwise. The probabilities over states are therefore defined
recursively as:

Ptþ1ðn; yÞ ¼ Ptðn; 0Þ ð1� y þ ð2y � 1Þbtðn; 0ÞsiÞ
þ Ptðn; 1Þ ð1� y þ ð2y � 1Þbtðn; 1ÞsiÞ ð1� syÞ
þ Ptðn� 1; 1Þ ð1� y þ ð2y � 1Þbtðn� 1; 1ÞsiÞ sy : ð1Þ

For example, consider the probability of having three old children and one
young child in period six (n ¼ 3, y ¼ 1). In this case, (1) reads:

P6ð3; 1Þ ¼ P5ð3; 0Þ b5ð3; 0Þsi þ P5ð3; 1Þ b5ð3; 1Þsi ð1� syÞ
þ P5ð2; 1Þ b5ð2; 1Þsi sy : ð2Þ

The state (n ¼ 3, y ¼ 1) can only be reached if in period five there are either
three old children, or two old children and a young child. Therefore (2) sums
over the respective probabilities P5ð3; 0Þ, P5ð3; 1Þ, and P5ð2; 1Þ in period five.
Also, there has to be a birth in period five, and the infant has to survive, since
otherwise there would be no young child in period six. Therefore, each
probability is multiplied by b5ðn; yÞsi. If the state in period five is f3; 1g, there
are three old children in period six only if the young child dies. Therefore, the
respective probability is also multiplied by 1� sy . Finally, if there are only
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two old children in period five, the young child has to survive if there are to be
three old children in period six. Hence, the last term is multiplied by sy . The
probability of having n children survive into adulthood is:

P ðnÞ ¼ PT ðn; 1Þ ð1� syÞ þ PT ðn; 0Þ þ PT ðn� 1; 1Þ sy : ð3Þ
Birth decisions do not enter here, since there are no births in the final period
of adulthood T . The decision problem in the sequential model is:

Model C: (Stochastic Barro-Becker with discrete and sequential fertility
choice)

max
fbtgT

t¼0

XT

t¼0

X
ht2Ht

ct ðw� pbtðhtÞ � qytÞ1�r

1� r
Pt htð Þ þ b

XN

n¼0
n�VP nð Þ

( )
;

where the probabilities over states PtðhtÞ and surviving children P ðnÞ are
functions of the birth decisions as defined in (1) and (3) above, and the initial
probabilities are given by P0ð0; 0Þ ¼ 1 and P0ðh0 6¼ f0; 0gÞ ¼ 0 (adults start
without children).

Model C is related to the sequential fertility choice models developed by
Sah (1991) and Wolpin (1997). In Sah’s model, costs accrue only to surviving
children, there is no limit to fecundity, and children survive for sure once they
make it through the first period. Under the restrictions p ¼ 0, sy ¼ 1, and
K ¼ T our model is a special case of Sah’s multi-period setup. Wolpin (1997)
analyzes a three-period model (and employs a multi-period version for esti-
mation) which allows for differential survival of infants and children and
limits fecundity to the first two periods. Model C is a special case of Wolpin’s
model under the restrictions T ¼ 2, K ¼ 1, r ¼ 0, and q ¼ 0.

A potential limitation of Model C is that we do not allow the household to
borrow or lend in order to smooth income over time. This assumption may
have an impact on the results if there is a lot of curvature in utility. However,
the sensitivity analysis carried out in Sect. 5 will show that the main results
are robust even when utility is close to linear, in which case there is little desire
for consumption smoothing.

3. Analytical findings

In this section, I examine the effect of mortality decline on fertility in the three
variants of the altruistic-parents model from an analytical perspective. As we
will see, clear-cut theoretical results on the mortality-fertility link are only
available for a few special cases of the general model. Section 4 will
complement the theoretical results derived here with quantitative findings
from a calibrated model. All proofs are contained in the appendix.

Proposition 1. Let bðsÞ denote the solution to Model A as a function of s. bðsÞ
has the following properties:

� The number of surviving children sbðsÞ is non-decreasing in s.
� If p ¼ 0 and q > 0, fertility bðsÞ is decreasing in s and sbðsÞ is constant.
� If p > 0 and q ¼ 0, fertility bðsÞ is increasing in s.

The intuition for these results is simple. Since parents care only about sur-
viving children and there is no uncertainty, the survival probability s affects

342 M. Doepke



choices only through the full cost of a surviving child p=sþ q. Raising s
lowers this cost, and through the substitution effect therefore increases the
number of surviving children.

In the special case where the cost p for each birth is zero, the total cost of a
surviving child is independent of s, and consequently parents choose the
preferred number of surviving children irrespective of s. This implies that the
total number of births declines in inverse proportion to s as the survival
probability increases.

When the cost component specific to surviving children q is zero, the cost
of a surviving child is inversely proportional to s. The reaction of the number
of births bðsÞ to changes in s now depends on the price elasticity of the
demand for (surviving) children. Given the assumptions 0 < � < 1 and
0 < r < 1, this elasticity is bigger than one, so that the total number of births
rises as the survival probability increases.

In summary, we see that in the deterministic model net fertility always
rises as the survival probability increases. What happens to the total number
of births depends on which cost component dominates. If a major fraction of
the total cost of children accrues for every birth, fertility would tend to in-
crease with the survival probability; the opposite holds if children are
expensive only after surviving infancy.

I turn to the stochastic models next.

Proposition 2. Let bðsÞ denote the solution to Model B as a function of s. If
p ¼ 0, the optimal choice bðsÞ is non-increasing in s.

Proposition 3. Let btðhtÞðsiÞ denote the solution to Model C as function of the
infant survival probability si at a given state ht. If p ¼ 0 and sy ¼ 1, btðhtÞðsiÞ is
non-increasing in si.

Thus in both stochastic models, we find that if there is no birth-specific
cost, the optimal number of births declines as survival rates increase. The
intuition from the deterministic model therefore carries over to the stochastic
case. Only surviving children are costly, and surviving children is all the
parents care about. Consequently, parents adjust their fertility to stay close to
their preferred level of fertility. Notice, however, that even if p ¼ 0 in the
stochastic model parents are no longer indifferent with regards to s. A higher
survival probability reduces uncertainty about the number of surviving chil-
dren, which, given risk aversion, increases expected utility.

In the sequential model, in the case p ¼ 0 we can also show that age at first
birth (weakly) increases with the survival probability. There are no clear-cut
results, however, regarding net fertility. If utility is highly concave in n,
parents want to avoid a low number of surviving children. If mortality is
high, this can give rise to a precautionary demand for children or ‘‘hoarding,’’
which declines as mortality (and therefore uncertainty) decreases. However,
the opposite effect is also possible, since utility is concave in consumption as
well. If parents are very risk averse in terms of consumption, they might want
to avoid the risk of having too many surviving children (and thereby high
expenditures on children), which would lower the number of births when
mortality is high. While these effects apply in principle to both Model B and
Model C, the model with sequential fertility choice is in some sense in between
the deterministic and the stochastic model. Since choices are spread out over
time, in this case parents have the possibility of replacing children that die
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early in the life cycle, leading to less uncertainty over the realized number of
children than in Problem B, where all children are born simultaneously.

For similar reasons, no general results are available for the case p > 0,
even if q ¼ 0. In the deterministic model, in this case total fertility bðsÞ in-
creases in s. In the stochastic model, the opposite may be true if the pre-
cautionary motive for having children is important. Consider the case of a
parent whose primary concern, due to high risk aversion, is to avoid being left
without any surviving children. Fertility will be highest when mortality is high
as well, since the parent has to rely on a ‘‘law of large numbers.’’ The number
of births would decline if an increased survival probability lowered uncer-
tainty about the number of surviving children.

The theoretical analysis identifies two important factors which influence
the child mortality-fertility nexus: the relative cost of dying and surviving
children, and the degree of risk aversion regarding the number of sur-
viving children. Since both factors depend nontrivially on model param-
eters, the question whether reductions in child mortality increase or
decrease net fertility is ultimately quantitative in nature.

4. Quantitative findings

The analytical results show that all three models are consistent with declining
total fertility rates (i.e., number of births) in response to falling mortality.
However, we are left without a clear-cut prediction for the relationship of child
mortality to net fertility (i.e., number of survivors). Only the deterministic
model unambiguously predicts that the number of surviving children will rise
as mortality falls. In the more elaborate stochastic models, the relationship
could go either way. Therefore, I assess the quantitative predictions of the
models with a calibration exercise. Each model is parameterized to reproduce
mortality and fertility rates in England in 1861, when infant and child
mortality was still high. I then increase the survival parameters to correspond
to mortality rates in 1951 (by which time most of the fall in infant and child
mortality had been completed) and compare the predictions of each model for
the impact on fertility rates.

The models are parameterized as follows. In the sequential model, we set
T ¼ 14 and K ¼ 12, so that the maximum number of births is 13. Income w is
a scale parameter and is set to 1 per period in the sequential model and 14 in
the other models. The parameter p corresponds to the cost of a child until its
first birthday, while the parameter q accounts for the remaining cost. In terms
of goods, it is natural to assume that the yearly cost increases until the child is
able to work and partly pay for itself. The time cost, on the other hand,
decreases over time. In addition, the cost per birth should account for the cost
of pregnancy and the risk of the mother’s death during childbirth. Since time
and goods cost move in opposite directions, I assume as the baseline case that
overall cost is proportional to age, and that children are no longer a net
burden once they are six years old. I therefore set q=p ¼ 5. The overall level of
the cost parameters is set such that in the sequential model, a household with
both an infant and a young child spends half of its income on the children.
This gives p ¼ 1=12 and q ¼ 5=12. The curvature parameters in the utility
function are set to r ¼ � ¼ 1=2, and the discount factor in the sequential
model is c ¼ 0:95. The children’s utility level V is equated to the parent’s
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utility in each case (i.e., the steady-state utility that would obtain with con-
stant income and mortality rates).

The survival parameters are chosen to correspond to the situation in
England in 1861. According to Perston et al. (1972) the infant mortality rate
(death rate until first birthday) was 16%, while the child mortality rate
(death rate between first and fifth birthday) was 13%. Accordingly, I set
si ¼ 0:84 and sy ¼ 0:87 in the sequential model, and s ¼ sisy ¼ 0:73 in the
other models. Finally, the altruism factor b is set in each model to match the
total fertility rate, which was 4.9 in 1861 (Chenais 1992). Since fertility
choice is discrete in Models B and C, I chose a total fertility rate of 5.0 as
the target.

Each model is thus calibrated to reproduce the relationship of fertility and
infant and child mortality in 1861. I now examine how fertility adjusts when
mortality rates fall to the level observed in 1951, which is 3% for infant
mortality and 0.5% for child mortality. The results for fertility can be com-
pared to the observed total fertility rate of 2.1 in 1951.

In Model A (Barro-Becker with continuous fertility choice), the total
fertility rate falls from 5.0 (the calibrated target) to 4.2 when mortality rates
are lowered to the 1951 level. The expected number of surviving children
increases from 3.7 to 4.0. Thus, there is a small decline in total fertility, but (as
was to be expected given Proposition 1) an increase in the net fertility rate.

Perhaps surprisingly, the results generated by Model B (stochastic Barro-
Becker with discrete fertility choice) are very similar to Model A. In the
stochastic model, total fertility falls from 5.0 to 4.0, and net fertility increases
from 3.7 to 3.9. Fertility falls by more than in the deterministic model, but the
difference is small.

In Model C (sequential fertility choice), the total fertility rate is not an
integer since it depends on the random individual mortality realizations.
Therefore, b was chosen to move the total fertility rate to 5.2, which is the
closest possible match to the target of 5.0. When mortality is lowered to 1951
levels, fertility falls only to 5.0, while net fertility increases substantially from
3.8 to 4.8. These results are partly due to the fact that the sequential model
distinguishes infant and child mortality, while the other models do not. The
sequential model probably overstates the cost of child mortality, since we
assume that the entire cost q has to be paid if a child dies, even though most
of child mortality is concentrated near the beginning of the interval from one
to five years of age. The models line up more closely if we set sy ¼ 1 and
assign the entire fall in mortality to infant mortality si (as we do implicitly in
the other two models). In this case, total fertility falls from 5.1 to 4.0, while
net fertility increases from 3.7 to 3.9. This is identical to the results with
Model B.

Figures 1 to 3 show that the predictions of the models are similar for the
entire range of possible infant mortality rates (the solid line is the total fer-
tility rate, and the dotted line is the net fertility rate; for Fig. 3, child mortality
was set to sy ¼ 1). The sequential model yields additional predictions for the
age at first birth, which increases with the survival probability once si is at
least 10 percent (Fig. 4). This increase not only reflects the corresponding
decline in total fertility, but also narrower spacing of births. When mortality
is high, parents start having children early so that there is time to make up for
children who die. This replacement motive is less important when survival
rates are high.
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In terms of guiding the applied researcher, our results show that once the
differential cost of dying and surviving children is accounted for, the deter-
ministic Barro-Becker model leads to virtually the same conclusions as the

Fig. 1. Births and survivors in the benchmark model

Fig. 2. Births and survivors in the binomial model

Fig. 3. Births and survivors in the sequential model
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stochastic model with sequential fertility choice. Thus, unless questions
concerning birth order and timing are of particular interest (as in Caucutt et al.
2002), the basic model can be used as a stand-in for the more elaborate setup.

In all computations, the children’s utility V was held constant. However,
results are virtually unchanged if V is adjusted to reflect the steady-state
utility at each value of s. This utility increases in s since the cost of surviving
children falls as s increases, while uncertainty is reduced. If the effect of s on
utility were taken into account, we would observe an additional upward effect
on (both net and gross) fertility rates as s increases. Quantitatively, this effect
is small. We also disregard the increase in income per capita over the period,
since with the chosen functional forms fertility is independent of the level of
income, as long as the cost of children is proportional to income. This is
approximately true if a major part of the cost of children is either a direct time
cost or is tied to the level of wages. If there is a sizable goods component in
the cost of children, children become relatively more affordable as wages rise,
which once again would exert an upward effect on fertility. Thus, accounting
for the dependency of V on s or the effect of rising wages can only strengthen
our basic conclusions.

In summary, each model predicts that total fertility falls with infant
mortality, but none of the models predicts a fall in net fertility rates. Relative
to the data, the models suggest that only a small proportion of observed
fertility decline, and none of the net fertility decline, is accounted for by
declining infant mortality.

5. Sensitivity of the results

The quantitative results in the preceding section were obtained for specific,
calibrated parameter values. The question arises whether the results are
sensitive to the choice of parameters. In other words, are there reasonable
parameter values for which any of the models predict a substantial decline in
net fertility as infant mortality declines? We know from Proposition 1 that
this can never be the case in Model A. In the other models, however, a
‘‘precautionary’’ demand for children can arise if parents’ utility is highly
concave in the number of children, but close to linear in consumption. The

Fig. 4. Age at first birth in the sequential model
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curvature of utility is governed by the parameters r and �. To examine the
sensitivity of the results, the computations were repeated with r and � varying
independently from 0:01 to 0:99 (on a grid with four values per parameter, or
16 possible combinations). In each case, the discount factor b was adjusted to
keep fertility at 5.0 given observed mortality rates in 1861. As was to be
expected, we find that in Model B a precautionary demand for children arises
if risk aversion with respect to children is high, while risk aversion with
respect to consumption is low. In Model C with sequential fertility choice,
however, the relationship between mortality and fertility is surprisingly robust
with respect to the choice of utility parameters. Specifically, we did not find a
single case where in an increase in the survival probability results in
substantial net fertility decline.

To illustrate this point, let us consider the extreme case of r ¼ � ¼ 0:01.
Here utility from consumption is close to linear, while risk aversion with
regards to the number of surviving children is high. The discount factor b is
adjusted to keep fertility at 5.0 given 1861 mortality rates. If we now lower
mortality rates to the level of 1951, in Model B total fertility falls from 5.0 to
2.0, and net fertility from 3.7 to 1.9. This effect disappears entirely, however,
when we move (with the same parameters) to the more realistic sequential
model, where parents can replace children who die early. Here, despite the
high risk aversion with regards to the number of children, total fertility drops
only to 4.0, and net fertility rises to 3.9, just as with the benchmark param-
eters. Figures 5 and 6 show fertility rates over the entire range of mortality
rates in the two models. Thus, in the sequential setup the conclusion that
mortality decline raises net fertility is robust to different preference specifi-
cations, even if we deliberately emphasize the precautionary motive for
hoarding children.

Another parameter which could potentially have an important impact on
the results is the fecundity limit K in the sequential model. If less time is
available to replace children once mortality is experienced, the hoarding
motive might be expected to become more important. In the computations,
however, this did not turn out to be the case. As long as K > 7, the results
were virtually unaffected by the choice of K. For K � 6, the fertile period is
too short for fertility rates to increase significantly as the survival probability

Fig. 5. Births and survivors in the binomial model, r ¼ 0:01, � ¼ 0:01
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declines, which limits the possibility of hoarding. Once again, the basic
conclusion remains that net fertility does not fall as mortality declines,
regardless of the choice of K.

Finally, the total cost of children and its distribution between a cost per
birth and per surviving child might influence the results. We know from the
theoretical results that the hoarding motive is more likely to be important if
the cost per birth is low. However, even in the extreme case of p ¼ 0 (cost per
birth is zero) the model predictions change very little from what is displayed
in Figs. 1–6. In the sequential model with p ¼ 0 and the utility parameters
r ¼ � ¼ 0:01 (the case most favorable for the hoarding motive) net fertility
increases by 0.2 if mortality is lowered from 1861 to 1951 levels, just as in the
baseline case. Likewise, varying the overall cost of children (relative to in-
come) has hardly any effect, as long as we adjust the discount factor to
control for initial fertility.

The overall results of the sensitivity analysis suggest that at least in the
sequential fertility choice model (which is the most realistic case) the curva-
ture of utility has little effect on the child mortality-fertility relationship. The
possibility of replacing a child after a death occurs implies that the hoarding
motive plays only a minor role. Instead, child mortality affects fertility chiefly
through the total cost of surviving children, which is exactly the channel
emphasized by the deterministic Barro-Becker model. This also explains why
the predictions of the deterministic and the sequential model are remarkably
similar in a variety of circumstances.

6. Theoretical results versus empirical findings

The analysis in the preceding sections led to a clear conclusion. Over the
empirically relevant range of mortality rates, a reduction in child and infant
mortality results in a decline in total fertility rates, but not in net fertility
rates. In this section, I contrast these theoretical predictions to empirical
evidence on the child mortality-fertility link. While there is inevitable
variation in the empirical results, the preponderance of the available evidence
supports the predictions of the theoretical model.

Fig. 6. Births and survivors in the sequential model, r ¼ 0:01, � ¼ 0:01
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A significant part of the empirical literature focuses on the experience of
Western European countries during the demographic transition. To provide a
first impression of the data, Figs. 7–11 plot the evolution of birth rates and
infant mortality rates from 1835 to 1940 in the United Kingdom, France,
Germany, Sweden, as well as the United States.6 In each case, fertility and

Fig. 7. Births and infant mortality rates in the United Kingdom

Fig. 8. Births and infant mortality rates in France
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infant mortality decline substantially over the period. However, there is no
general pattern regarding the relative timing of fertility and mortality decline.
In the United Kingdom, substantial fertility decline started before 1880. In-
fant mortality was still high at the time, and actually rose during the first two
decades of substantial fertility decline. Infant mortality started declining

Fig. 9. Birth and infant mortality rates in Germany

Fig. 10. Birth and infant mortality rates in Sweden
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rapidly only after 1900. The British experience therefore suggests that mor-
tality decline follows fertility decline. France had a similar experience. Fer-
tility was already in decline in 1830, and the downward trend continued
throughout the nineteenth century. Infant mortality, in contrast, stayed high
until close to 1900. The experience of the U.K. and France therefore appears
to contradict the hypothesis that infant mortality decline was a main causing
factor of fertility decline during the transition.

The situation is different, however, in Germany and Sweden. In both
cases, sizable reductions in infant mortality took place before the main phase
of fertility decline. Subsequently, fertility and infant mortality fell in tandem
as the demographic transition progressed. The U.S. data is less reliable and
partially based on estimates, because comprehensive registration of deaths
and births did not occur before the twentieth century. Nevertheless, the
pattern bears some similarity to the French example. Fertility fell from the
beginning of the nineteenth century, whereas infant mortality was substan-
tially reduced only after 1880.

Our cursory examination of the evidence does not reveal a clear one-way
link from mortality decline to fertility decline, or, for that matter, the other
way around. A more comprehensive review of the European evidence from
this period is provided by van de Walle (1986). Using province level data from
a variety of countries, van de Walle computes the correlation of the change in
fertility with the change in infant mortality during the period 1870 to 1930. If
infant mortality declines were a major cause of fertility decline, we would
expect the correlation to be positive. However, the results are mixed at best.
In most cases, the estimated correlation is not significantly different from
zero; the few significantly positive estimates are offset by others which are
significantly negative. Van de Walle also considers the relative timing of

Fig. 11. Birth and infant mortality rates in the U.S. (white population)
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fertility and mortality decline in different provinces of a country. The start of
the fertility or mortality transition is defined as the first time when the
respective index is at least 10 percent below its pre-transition level. Again, the
evidence is mixed. In Switzerland, in the vast majority of districts infant
mortality decline precedes fertility decline. In Germany, there is an about
equal number of districts with fertility or mortality falling first. In the case of
Belgium and England, finally, fertility generally declines before infant mor-
tality does.

The German case is analyzed in more detail by Galloway et al. (1998), who
examine family-level data from Prussia in the period 1875 to 1910. Unlike
most empirical studies, Galloway et al. (1998) employ two-stage least squares
estimation to deal with potential two-way causality between child mortality
and fertility. In regressions that exploit the cross-sectional variation across
cities and districts in their data set, little evidence for a significant relationship
of child mortality and fertility is found. On the other hand, when a fixed effect
for each district is introduced (so that only the time-series variation in each
district is exploited) a strong positive relationship between child mortality and
fertility arises. In rural districts, fertility changes with mortality about one-to-
one, while the reaction in cities is even larger. The estimates therefore would
imply that, at least in the cities, mortality decline led to a reduction in net
fertility rates. It is not clear, however, how reliable these estimates are. Both
fertility and mortality have a strong downward time trend during the period
considered, which could lead to biased and imprecise estimates. The authors
themselves state that their fixed-effect estimates probably overstate the true
effect of child mortality on fertility.

A similar study using more recent data is carried out by Rosero-Bixby
(1998), who analyzes county-level data from Costa Rica during the fertility
transition. Apart from demographic data, the data set includes a variety of
county characteristics which could also affect fertility. Once these other
county-specific effects are controlled for, no evidence in favor of a causal
link from child mortality decline to fertility decline during the transition is
found.

The causes of fertility decline during the demographic transition in Swe-
den are examined by Eckstein et al. (1999). Their study is particularly relevant
from the perspective of this paper, since long-run empirical data is analyzed
using an estimated dynamic model of fertility choice. The model allows for
multiple life-cycle periods, multiple births, and includes goods and time costs
for children. As in the models discussed here, there is a cost differential
between surviving and dying children: the goods accrues for all children,
whereas the time cost only applies if a child survives to the next period.
Compared to the sequential model presented in Sect. 2, the most important
difference is that mortality is deterministic. A given percentage of children
survives until the next period, so there is no uncertainty about the number of
surviving children.

The model parameters are chosen to fit model predictions to Swedish data
on child and adult mortality rates, fertility rates, and real wages from 1736
and 1946. Using the estimated model, Eckstein et al. (1999) perform a series
of counterfactual experiments to determine the contributions of different
potential explanations to overall fertility decline. In order to isolate the role of
infant and child mortality, the authors feed the historical pattern of declining
infant and child mortality into the model, while holding wages and adult
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mortality constant. The resulting predictions of the model are consistent with
our findings: the total fertility rate falls in response to declining mortality, but
the net fertility rate increases. A similar experiment using adult mortality
rates reveals only a weak relationship between adult mortality and fertility.
When the effect of rising wages is isolated, both total and net fertility rates
decline, if only by a relatively small amount.

A particularly interesting result is that the combined effect of raising
wages and lowering infant and child mortality at the same time much exceeds
the sum of the two effects in isolation. To see the intuition for this result,
recall that rising wages lower fertility through a substitution effect, since the
time cost of raising children increases. When infant mortality falls, this time
cost makes up a larger fraction of the total cost of a child, since the additional
goods cost has to be paid regardless whether a child survives. Therefore, when
mortality is low, rising wages have a relatively larger effect on the total cost of
a child, which amplifies the impact on fertility rates. Thus, while child mor-
tality decline per se does not decrease net fertility, it still contributes indirectly
through the interaction with rising wages. In Sect. 7 we will explore whether a
similar effect can arise in our model.

In addition to evidence related to fertility decline during the demographic
transition, there is also a sizable empirical literature which uses cross-sectional
data to assess the link of child mortality and fertility. In a seminal study, Ben-
Porath (1976) analyzes a retrospective survey of the birth history of married
women in Israel. Based on data for the period 1960–1963, Ben-Porath finds
strong evidence for the replacement effect. That is, experiencing the death of a
child increases the number of births and reduces the intervals between births.
The degree of replacement varies with the origin of the mother and the birth
order. For example, among mothers of Asian or African descent, close to 80
percent of child deaths are replaced at birth order 2 or 3. The replacement
effect declines at higher birth orders, and is generally weaker for mothers of
Israeli, European, or American descent. Since the replacement effect is always
below 100 percent, in all cases a decline in mortality would imply an increase
in net fertility.

Knodel (1978) emphasizes that in addition to deliberate attempts to
control fertility, child mortality decline can also affect fertility when any
deliberate fertility control is absent. It has long been recognized that
breastfeeding tends to delay further pregnancy. The death of an infant
therefore raises the probability of further births through the premature
interruption of breastfeeding. Knodel compares the effect of infant mortality
on subsequent births in German and French regions in different time periods
between 1640 to 1900, mostly from the period before the onset of substantial
fertility decline. Confirming the physiological link between child mortality
and fertility, Knodel finds is that the effect of a child’s death on fertility is
particularly small in areas where breastfeeding is known to be uncommon.

Haines (1988) provides a study using data from the 1900 and 1910 U.S.
censuses which allows a separation of replacement and hoarding effects. He
finds that at at the turn of the century, between 10 to 30 percent of child
deaths were replaced through higher subsequent fertility. The hoarding effect
is estimated to amount to 30 to 50 percent of a child per death, resulting in a
total effect in the neighborhood of 60 to 80 percent. Once again, these
numbers imply that fertility decline would raise total fertility, but lower net
fertility.
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A number of studies of fertility behavior in developing countries find that
factors other than replacement and hoarding behavior have to be taken into
account to interpret the evidence. Using data from Colombia, Costa Rica,
Mexico, and Peru for the years 1969–1970, Rutstein and Medica (1978) come
to the surprising finding that in a number of regions rises in infant mortality
lead to a decrease in subsequent fertility. The authors conjecture that the
health problem leading to the death of the child (usually an infectious disease)
might also affect the mother, thereby shortening fecundity and subsequent
fertility. Also, in a number of regions fertility is close to the natural limit,
leaving little room for a replacement effect. In an analysis of data from
Taiwan, Heer and Wu (1978) put the spotlight on a yet another variable: the
sex of the child. While the death of a child generally increases subsequent
fertility, the increase is significantly lower if there are already three surviving
sons as opposed to three surviving daughters. Defo (1998) finds that in
Cameroon, birth order matters. The death of a first child has a much larger
impact on completed fertility than the death of a child higher in the birth
order. Gender also matters, with surviving boys lowering the probability of
further pregnancies. Defo attributes this result to the special role played by
first-borns in Cameroonian culture.

To summarize, the majority of the cross-sectional studies find strong
evidence in favor of a replacement effect: fertility increases after the death of a
child is experienced. This increase is generally less than one-to-one, however,
so that lost children are not replaced completely. The cross-section evidence
therefore supports the main conclusions of our model, namely, that total
fertility falls and net fertility increases as child mortality rates decline. In
addition, the empirical studies show that a number of other factors not
captured in our theoretical models also matter for the mortality-fertility
relationship. Examples include the physiological effect which arises from
interrupted breastfeeding, as well as the differential response to a child’s death
depending on the sex of the existing children.

7. An extension with endogenous education decisions

The main result of this study so far is a negative one, namely, falling child
mortality is unlikely to have caused the large decline in net fertility observed
during the demographic transition. However, our theoretical framework is
consistent with other explanations of the same facts. In particular, a number
of authors7 who use the Barro-Becker model interpret fertility decline as a
quantity-quality substitution: parents have fewer children in order to invest
more in each child. In this section, I extend Model A8 by allowing the parents
to invest into the education of their children. This education choice
introduces a quantity-quality tradeoff which can serve as an explanation
for fertility decline. I then explore whether infant and child mortality interacts
with the quantity-quality tradeoff. Eckstein et al. (1999) point out that in their
model such an interaction is important: mortality reductions per se increase
net fertility, but in combination with rising real wages they can amplify the
negative total effect on fertility. As we will see, our model does not lead to the
same conclusion. To the contrary, allowing for endogenous education choice
strengthens the positive effect of mortality decline on net fertility.
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In the extended model, a parent can invest fraction e of its time in the
education of its surviving children. We assume that the cost only accrues to
surviving children, since by definition child mortality affects children under
the age of six, the age at which (formal) education usually begins.9 The
remaining fixed costs p (per birth) and q (per surviving child) are expressed as
fractions of the parent’s time as well. The distinction between time and goods
costs was immaterial for the analysis so far, but it will play an important role
here. Assuming that all costs are in terms of time implies that the total cost of
children is proportional to income.10

To introduce a motive for education, a person’s income now has two
components. There is a basic wage w for ‘‘raw labor’’ that a person gets
regardless of their education, and an additional wage w per unit of human
capital h. The education provided by parents is converted into children’s
human capital h0 by a concave, increasing function hðeÞ which satisfies
hð0Þ ¼ 0. Under the assumption that wages and the survival probability s are
constant, the parent’s utility can be described by a value function V ðhÞ which
satisfies the Bellman equation:

V ðhÞ ¼ max
n;b;e

c1�r

1� r
þ bn�V ðh0Þ

� �
subject to:

c ¼ ðwþ whÞð1� pb� ðqþ eÞnÞ;
n ¼ sb;

h0 ¼ hðeÞ:
In the endogenous education framework, two potential determinants of
fertility decline can be distinguished: changes in the survival probability s, and
changes in the importance of human capital, as measured by the wage w. To
assess the relative importance of these factors, the model has to be solved
numerically. The value function V ðhÞ and the optimal policy functions nðhÞ,
bðhÞ, and eðhÞ can be computed through value function iteration. The
predictions of the model for a given set of parameters are evaluated at the
steady state level of human capital �h, that is, the level of human capital that
satisfies �h ¼ hðeð�hÞÞ.

The calibration of the endogenous education model follows the same
strategy used for the other models. Hence, the model parameters are chosen
to match observed mortality and fertility rates in 1861. As far as possible,
the same parameters were used as in the baseline calibration of Model A.
We therefore set r ¼ � ¼ 0:5, w ¼ w ¼ 14� 2

3 ¼ 9:33, p ¼ 1=168, and q ¼
5=168.11 The functional form used for hðeÞ is:

hðeÞ ¼ A
ffiffiffi
e
p
;

where A is chosen such that h ¼ 1=2 obtains in the initial steady state. Notice
that given these parameters, total income wþ wh matches its value of 14 in the
original calibration. Finally, b is chosen to match the observed total fertility
rate of 5.0 in 1861, given the actual infant and child mortality rates in that year.

Figure 12 shows the relationship between child mortality and fertility in
the model given the 1861 calibration. The value function was computed
separately for each value of the survival probability, and steady state fertility
rates are displayed for each s. As in Model A, we observe that the relationship
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between s and total fertility is hump-shaped, while net fertility is strictly
increasing in s. The key difference to Fig. 1 (which displays the same rela-
tionship in Model A without the education choice) is that the maximum
fertility level is significantly lower with endogenous education choice. In
Fig. 1, the total fertility rate peaks at 7.8 when the mortality rate is s ¼ 0:2,
while in Fig. 12 the maximum is 6.2 at s ¼ 0:35.

Let us now consider the observed fertility and mortality rates in 1951. By
increasing the human-capital component w of the total wage (or, equivalently,
the productivity A of the education technology hðeÞ), we can induce a
quantity-quality substitution which lowers the total fertility rate to the ob-
served level of 2.1 in 1951, given the survival probability of s ¼ 0:965 in that
year.12 Figure 13 shows the entire relationship between mortality and fertility
for this calibration. As in all models considered so far, net fertility is strictly
increasing in s, and total fertility is hump-shaped with a maximum fertility
rate of 2.8.

Figure 13 also helps to answer the question whether mortality decline
contributed to fertility decline through an interaction with the quantity-

Fig. 12. Birth and survivors in the quantity-quality model, 1861 calibration

Fig. 13. Birth and survivors in the quantity-quality model, 1951 calibration
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quality tradeoff. What would have happened if wages had increased as as-
sumed in the calibration, but mortality rates had stayed at their 1861 level?
The answer can be read off Fig. 13 at the 1861 mortality rate of s ¼ 0:73: The
total fertility rate would have been 2:4, and the net fertility rate 1:8. This
compares to total and net fertility rates of 2:1 and 2:0 under the actual
mortality rate of s ¼ 0:965. Thus, had mortality remained at its 1861 level, the
decline in the net fertility rate would have been even larger than it was in
reality. Mortality decline therefore did not contribute to declining net fertility,
even through the indirect route.

It is instructive to compare this result to Eckstein et al. (1999), who fit a
theoretical model of fertility choice to Swedish data, and carry out a series of
counterfactual experiments to assess the contributions of child mortality
decline and wage increases to fertility decline. Concentrating on the period
1856 to 1946, they find that mortality decline alone with wages held constant
at their initial level would have lowered the total fertility rate by 0.62. Feeding
only the observed wage increase into the model while holding mortality
constant leads to decrease in total fertility of 0.85. The sum of the two isolated
effects is therefore a decline of 1.47. If both mortality and wages change at the
time, however, the combined effect is a decline of 1.81, which much exceeds
the sum of the individual effects. Let us now consider the same calculations in
our model with endogenous education choice. Starting from the 1861 cali-
bration, raising the survival probability from 0.73 to 0.965 while holding
wages constant lowers the total fertility rate by 0.8. Increasing wages by a
factor of 3:05 while holding mortality constant lowers total fertility by 2.6.
The sum of the two isolated effects is therefore a decline of 3.4 in total
fertility, which compares to a combined effect of minus 2.9 if both changes
take place at the same time. Thus, in our model the combined effect is smaller
than the sum of the two isolated effects.

Thus, unlike in Eckstein et al. (1999), child mortality decline does not
amplify the negative effect of rising wages on fertility. The results differ be-
cause wages affect fertility through a different channel in the two models. The
model of Eckstein et al. (1999) does not allow for investments in children. The
level of wages affects fertility through an income and a substitution effect.
Fertility falls as wages rise because the substitution effect is stronger than the
income effect. If child mortality is low, the time cost (which depends on
the wage) makes up a larger part of the total cost of children. This amplifies the
substitution effect and leads to a larger fertility decline in response to wages.

In the Barro-Becker model, a change in the level of wages per se
(holding education constant) does not change fertility: the substitution effect
and the income effect exactly offset each other13. However, the level of
wages can still affect fertility indirectly, through the optimal choice of child
quality versus child quantity. As wages rise, child quality becomes more
attractive, which raises education and lowers fertility. Notice, however, that
a decline in child mortality does nothing to amplify this effect. Quite to the
contrary, a decline in child mortality lowers the cost of every child, which
tends to favor quantity over quality. Indeed, in the computations underlying
Figs. 12 and 13 the optimal education choice e declines as the survival
probability s rises.

The Barro-Becker model with endogenous education choice does not
confirm the finding of Eckstein et al. (1999) that declining child mortality
amplifies the negative effect of wages on fertility. While such an effect is
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possible if preferences are non-homothetic (as in Eckstein et al. 1999), it
cannot arise through an interaction of child mortality with a quantity-quality
tradeoff in the decisions on children. To the extent that increased investment
in the quality of children is responsible for fertility decline, child mortality is
not an important contributor even on the indirect route.

8. Conclusions

All of the models discussed in this paper lead to the same conclusion: declines
in child mortality lower total fertility rates, but do not cause decreases in net
fertility. The findings are robust with respect to the inclusion of stochastic
mortality, sequential fertility choice, and endogenous education decisions.
The empirical evidence on the mortality-fertility relationship is also consistent
with our findings.

The basic intuition for the results is simple. If what parents care about
is surviving children, a reduction in mortality implies that the cost of
having a surviving child declines. Assuming that children are a normal
good, we would expect a rise in the demand for children, and therefore an
increase in the net fertility. What happens to overall fertility then depends
on the price elasticity of demand for children. If demand is very elastic, the
total fertility rate could increase as mortality declines. However, if mor-
tality is relatively low already, a further decline in mortality induces only a
small change in the overall cost of having a child. We would therefore
expect that at low mortality rates a further reduction in mortality leads to
a less-than-proportional increase in net fertility, and therefore a decrease in
total fertility. The results in Figs. 1–8 and 12–13 bear this out: in each
model, the total fertility rate increases in the survival probability s for low s
(where an increase in s has a large effect on the total cost of a surviving
child), but the relationship turns around for high s.

Our quantitative analysis shows that these findings stay intact even if we
account for stochastic mortality and sequential fertility choice. Contrary to
our results, a number of existing studies argue that with stochastic mortality a
large precautionary demand for children arises, which would lead to a neg-
ative effect of mortality decline on net fertility. There are two reasons why we
come to different conclusions than the existing literature. First, the risk-
aversion argument cuts both ways. Parents who decide to have a very large
number of children are hedging against many of them dying, but at the same
time they expose themselves to the risk of many of them surviving, meaning
that they would have to support a large group of children and would have to
lower their own consumption. Hence, risk aversion with respect to the par-
ent’s own consumption tends to work against a precautionary demand for
children. Second, and perhaps more importantly, the sequential nature of
fertility choice also tends to lower the precautionary demand for children.
Since most of mortality is concentrated very early in life, parents can adopt a
‘‘wait-and-see’’ stance, produce their desired number of children, and simply
replace those that happen to die early in life. This replacement strategy is not
perfect, because fecundity is limited and it might turn out to be impossible to
get another child. Nevertheless, the possibility of replacement greatly miti-
gates the precautionary demand for children, to the extent that in the cali-
brated model it is nearly impossible to generate such a demand.
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Even though we do not assign an important to role to child mortality
decline per se, our results do not rule out that mortality decline might interact
with other explanations for fertility decline. For example, in the model by
Eckstein et al. (1999), child mortality decline amplifies the effect of rising
wages on fertility. We find that such an amplification effect does not occur,
however, if a quantity-quality tradeoff is the driving force behind fertility
decline. In the model presented in Sect. 7, rising wages increase the role of
human capital, which induces parents to lower fertility and invest more in the
education of their children. Mortality decline does not strengthen this effect.
To the contrary, since mortality decline lowers the cost of every child equally,
it favors quantity over quality and slows fertility decline.

A mathematical appendix

Proof of Proposition 1. Model A is given by:

max
0�b�w=ðpþqsÞ

ðw� ðp þ qsÞbÞ1�r

1� r
þ bðsbÞ�V :

( )
ð4Þ

The assumptions on parameter values (r; �; b 2 ð0; 1Þ, s 2 ð0; 1�, p; q � 0,
w; V ; p þ q > 0) guarantee that (4) is strictly concave in b and that an interior
optimum exists. The optimal number of births bðsÞ as a function of the
survival probability s is characterized by the first-order condition:

ðp þ qsÞ s��bðsÞ1��

ðw� ðp þ qsÞbðsÞÞr ¼ b�V ; ð5Þ

which can be written as:

ðp þ qsÞ ðsbðsÞÞ1��

s1�rðws� ðp þ qsÞsbðsÞÞr ¼ b�V

or:

ðp=sþ qÞ1�r ðsbðsÞÞ1��

ðw=ðp=sþ qÞ � sbðsÞÞr ¼ b�V : ð6Þ

There is a unique bðsÞ which satisfies (6) for any s. Notice that the term
ðp=sþ qÞ is non-increasing in s (strictly decreasing if p > 0), while the term
w=ðp=sþ qÞ is non-decreasing in s (strictly increasing if p > 0). Since (6) has
to be satisfied for all s, sbðsÞ is therefore non-decreasing in s (strictly
increasing if p > 0), which proves the first part of the claim.

If p ¼ 0, (5) simplifies to:

q ðsbðsÞÞ1��

ðw� qsbðsÞÞr ¼ b�V : ð7Þ

Since s only enters through sbðsÞ, net fertility sbðsÞ has to be constant for all s
to satisfy (7).
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Finally, if q ¼ 0 (5) simplifies to:

p bðsÞ1��

s� ðw� pbðsÞÞr ¼ b�V : ð8Þ

Since the left-hand side is strictly decreasing in s� and (8) has to be satisfied for
all s, bðsÞ is strictly increasing in s, which proves the last part of the claim. (

Proof of Proposition 2. We are considering Model B under the assumption
that the per-birth cost is zero, p ¼ 0. In this case, Model B is a special case of
the model analyzed by Sah (1991), and the results derived there apply. Spe-
cifically, define:

uðnÞ ¼ ðw� qnÞ1�r

1� r
þ bn�V ;

and:

Uðb; sÞ ¼
Xb

n¼0
uðnÞ b

n

� �
snð1� sÞb�n:

The choice problem is to maximize Uðb; sÞ by choice of b, and UðnÞ is strictly
concave in n and does not depend on b or s. The model is now in the form of
Sah (1991), and since the concavity assumption is satisfied, the proof for
Proposition 2 in Sah (1991) applies here as well. (

To prove Proposition 3, it is useful to first develop some additional
notation. The assumptions p ¼ 0 and sy ¼ 1 are maintained throughout. Let
VtðhtÞ be the utility at time t � T given that state ht has been realized. These
utilities are given by:

VT ðn; yÞ ¼
ðw� qyÞ1�r

1� r
þ b ð1� yÞn� þ yðnþ 1Þ�½ �V ð9Þ

for t ¼ T and:

Vtðn; yÞ ¼
ðw� qyÞ1�r

1� r
þ c btðn; yÞsi

h
ð1� yÞ Vtþ1ðn; 1Þ þ y Vtþ1ðnþ 1; 1Þ

i
þ c ð1� btðn; yÞsiÞ

h
ð1� yÞ Vtþ1ðn; 0Þ þ y Vtþ1ðnþ 1; 0Þ

i
ð10Þ

for 0 � t � T . Optimal birth decisions are determined by:

btðn; yÞ ¼ argmaxb2f0;1g

�
b
h
ð1� yÞ Vtþ1ðn;1Þ þ y Vtþ1ðnþ 1;1Þ

i
þ ð1� bÞ

h
ð1� yÞ Vtþ1ðn;0Þ þ y Vtþ1ðnþ 1;0Þ

i�
;

ð11Þ
with the additional restriction that btðn; yÞ ¼ 0 for t > K. I assume that when
a parent is just indifferent, a birth takes place and btðn; yÞ ¼ 1. This
assumption is for ease of exposition only and does not affect results. We will
also need to consider derivatives with respect to si. Since the usual derivative
may not be well defined for all si (bt is a step function), we will use left-hand
derivatives. We have @VT ðn;yÞ

@si
¼ 0 and for t < T :
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@Vtðn; yÞ
@si

¼ c btðn; yÞ
h
Vtþ1ðnþ y; 1Þ � Vtþ1ðnþ y; 0Þ

i

þ c
h
ð1� btðn; yÞsiÞ

@Vtþ1ðnþ y; 0Þ
@si

þ btðn; yÞsi
@Vtþ1ðnþ y; 1Þ

@si

i
:

ð12Þ
Notice that (11) and (12) imply:

btðn; 1Þ ¼ btðnþ 1; 0Þ ð13Þ
and:

@Vtðn; 1Þ
@si

¼ @Vtðnþ 1; 0Þ
@si

: ð14Þ

These relations will be used below. The following lemma can now be
established:

Lemma 1. For all t and y, Vtðn; yÞ is strictly monotone increasing and weakly
concave in n. btðn; yÞ is non-increasing in n. Vtðn; 1Þ � Vtðn; 0Þ is non-increasing
in n.

Proof. First, notice that Vtðn; 1Þ is equal to Vtðnþ 1; 0Þ apart from the first term,
which does not depend on n. Concavity of Vtðn; 0Þ (i.e., Vtðnþ 1; 0Þ � Vtðn; 0Þ is
non-increasing in n) is therefore equivalent to Vtðn; 1Þ � Vtðn; 0Þ being non-
increasing in n. The last part of the claim is therefore implied once we prove the
first part. We also have:

Vtðn; 1Þ � Vtðn� 1; 1Þ ¼ Vtðnþ 1; 0Þ � Vtðn; 0Þ: ð15Þ
Monotonicity and concavity of Vtðn; 0Þ therefore imply the same properties
for Vtðn; 1Þ. In the induction step below, it therefore suffices to establish these
properties for Vtðn; 0Þ.

The proof proceeds by induction. The first step is to show that VT ðn; yÞ is
strictly increasing and concave in n. These properties follow directly from the
Definition (9). Since T > K, we also have that bT ðn; yÞ ¼ 0, thus bT ðn; yÞ is
non-increasing in n.

Now assume that Vtþ1ðn; yÞ is strictly increasing and weakly concave in n
for y 2 f0; 1g. To complete the induction, we need to show that Vtðn; 0Þ has
the same properties and that btðn; yÞ is non-increasing in n. For the last part, it
follows from (11) that btðn; 0Þ ¼ 1 if and only if:

Vtþ1ðn; 1Þ � Vtþ1ðn; 0Þ � 0:

Since we assume that Vtþ1 is increasing and concave, the difference on the left-
hand side is non-increasing in n, and therefore btðn; 0Þ is non-increasing in n.
The same argument applies to btðn; 1Þ. Next, notice that in (10) Vtðn; 0Þ is a
strictly increasing function of the Vtþ1 on the right-hand side. Since the Vtþ1
are assumed to be strictly increasing in n, raising n therefore strictly increases
Vtðn; 0Þ even if the birth decision is held constant. Vtðn; 0Þ is therefore strictly
increasing.

Concavity requires more work. We want to show that
Vtðnþ 1; 0Þ � Vtðn; 0Þ does not increase with n:
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Vtðnþ 1; 0Þ � Vtðn; 0Þ½ � � Vtðn; 0Þ � Vtðn� 1; 0Þ½ � � 0 ð16Þ
for all n. Three cases can be distinguished. Assume first that for a given n,
btðnþ 1; 0Þ ¼ btðn; 0Þ ¼ btðn� 1; 0Þ ¼ b. Writing out (16) for this case gives:

bsi

h
Vtþ1ðnþ 1; 1Þ � 2Vtþ1ðn; 1Þ þ Vtþ1ðn� 1; 1Þ

i
þ ð1� bsiÞ

h
Vtþ1ðnþ 1; 0Þ � 2Vtþ1ðn; 0Þ þ Vtþ1ðn� 1; 0Þ

i
� 0;

which holds because of the assumed concavity of Vtþ1, regardless of b. Next,
assume btðnþ 1; 0Þ ¼ btðn; 0Þ ¼ 0 and btðn� 1; 0Þ ¼ 1 (notice that we already
established that bt is non-increasing in n given the induction hypothesis). In
this case, writing out (16) gives:

Vtþ1ðnþ 1; 0Þ � 2Vtþ1ðn; 0Þ
þ si Vtþ1ðn� 1; 1Þ þ ð1� siÞ Vtþ1ðn� 1; 0Þ½ � � 0

ð17Þ

Notice that since btðn; 0Þ ¼ 0, we must have Vtþ1ðn; 0Þ > Vtþ1ðn; 1Þ. Since the
left-hand side is increased relative to (17), it is therefore sufficient to show:

Vtþ1ðnþ 1; 0Þ � Vtþ1ðn; 0Þ � ½si ½Vtþ1ðn; 1Þ � Vtþ1ðn� 1; 1Þ�
þ ð1� siÞ ½Vtþ1ðn; 0Þ � Vtþ1ðn� 1; 0Þ�� � 0:

Because of (15), this is equivalent to:

Vtþ1ðnþ 1; 0Þ � Vtþ1ðn; 0Þ � ½si ½Vtþ1ðnþ 1; 0Þ � Vtþ1ðn; 0Þ�
þ ð1� siÞ ½Vtþ1ðn; 0Þ � Vtþ1ðn� 1; 0Þ�� � 0;

which is satisfied because of the assumed concavity of Vtþ1ðn; 0Þ. The last case
is btðnþ 1; 0Þ ¼ 0 and btðn; 0Þ ¼ btðn� 1; 0Þ ¼ 1. Writing out (16) gives:

Vtþ1ðnþ 1; 0Þ � 2
h
si Vtþ1ðn; 1Þ þ ð1� siÞ Vtþ1ðn; 0Þ

i
þ
h
si Vtþ1ðn� 1; 1Þ þ ð1� siÞ Vtþ1ðn� 1; 0Þ

i
� 0:

This time, since btðn; 0Þ ¼ 1, we must have Vtþ1ðn; 0Þ � Vtþ1ðn; 1Þ. By the same
argument as before, it is sufficient to establish the following condition where
the left-hand side has is increased relative to (19):

Vtþ1ðnþ 1;0Þ � Vtþ1ðn;0Þ

� si ½Vtþ1ðn;1Þ � Vtþ1ðn� 1;1Þ� þ ð1� siÞ ½Vtþ1ðn;0Þ � Vtþ1ðn� 1;0Þ�½ � � 0:

This is (18) and therefore satisfied. Vtðn; 0Þ is therefore concave, which
completes the proof. (

Proof of Proposition 3. We would like to show that btðn; yÞðsiÞ is non-
increasing in si. From (11), we have that btðn; yÞðsiÞ ¼ 1 if and only if:

Vtþ1ðnþ y; 1Þ � Vtþ1ðnþ y; 0Þ:
It is therefore sufficient to show that for all t and n:

@Vtðn; 1Þ
@si

� @Vtðn; 0Þ
@si

: ð20Þ
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The proof is once again by induction. At time T , condition (20) is trivially
satisfied since

VT ðn;yÞ
@si
¼ 0 for all n and y. Now assume that:

@Vtþ1ðn; 1Þ
@si

� @Vtþ1ðn; 0Þ
@si

ð21Þ

is satisfied for all n. To complete the proof, we need to show that (20) follows
at time t for all n. Using (12), condition (20) can be written as:

@Vtðn;1Þ
@si

�@Vtðn;0Þ
@si

¼ c btðn;1Þ Vtþ1ðnþ1;1Þ�Vtþ1ðnþ1;0Þ½ ��c btðn;0Þ Vtþ1ðn;1Þ�Vtþ1ðn;0Þ½ �

þc ð1�btðn;1ÞsiÞ
@Vtþ1ðnþ1;0Þ

@si
þbtðn;1Þsi

@Vtþ1ðnþ1;1Þ
@si

� �

�c ð1�btðn;0ÞsiÞ
@Vtþ1ðn;0Þ

@si
þbtðn;0Þsi

@Vtþ1ðn;1Þ
@si

� �
� 0:

ð22Þ
The first term is less than or equal to zero since Lemma 1 shows:

Vtþ1ðnþ 1; 1Þ � Vtþ1ðnþ 1; 0Þ � Vtþ1ðn; 1Þ � Vtþ1ðn; 0Þ
and Lemma 1 together with (11) implies that btðn; 0Þ � btðn; 1Þ. It therefore
suffices to show that:

c
h
ð1� btðn; 1ÞsiÞ

@Vtþ1ðnþ 1; 0Þ
@si

þ btðn; 1Þsi
@Vtþ1ðnþ 1; 1Þ

@si

i

� c
h
ð1� btðn; 0ÞsiÞ

@Vtþ1ðn; 0Þ
@si

þ btðn; 0Þsi
@Vtþ1ðn; 1Þ

@si

i
< 0

ð23Þ

This condition is satisfied since (14) and the induction hypothesis (21) imply:

@Vtþ1ðnþ 1; 1Þ
@si

� @Vtþ1ðnþ 1; 0Þ
@si

¼ @Vtþ1ðn; 1Þ
@si

� @Vtþ1ðn; 0Þ
@si

;

which completes the proof. (

Endnotes

1 Throughout the paper, the number of births per woman will be referred to as the total fertility
rate, while the number of surviving children is the net fertility rate.

2 In fact, in an earlier paper Kalemli-Ozcan (2002) develops a model that explains the entire
fertility decline during the demographic transition through declining child mortality alone.

3 If parents can choose education, V becomes an endogenous variable. Since mortality is
concentrated in the first few years of life, while education occurs later, there is no direct
interaction between child mortality and education decisions. Therefore, I abstract from
education for now; endogenous education decisions are introduced as an extension in Sect. 7.

4 The model could be extended to allow for a richer set of age-specific survival probabilities, but
two survival probabilities are sufficient to contrast the sequential setup to the case of
simultaneous fertility choice. In the data, mortality is highly concentrated in the first few years
of a child’s life.
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5 This assumption can be justified through the economic benefits of older children in terms of
child labor and help in the household. The model could be extended to a richer cost profile. It
is important, however, that children do not cause expenses forever, because then late-born
children would be cheaper overall than older children.

6 Birth rates were used instead of total fertility rates since they are more widely available,
especially at the beginning of the period.

7 Examples include Becker et al. (1990), de la Croix and Doepke (2003), Doepke (2001),
Fernández-Villaverde (2001).

8 For simplicity, the exposition is limited to the deterministic model. We already established
that the deterministic and the sequential model have very similar implications for the link
between child mortality and fertility. The extension considers investments which are best
thought of as taking place after mortality or survival have been realized. That is, we are
considering a stage where the remaining choice problem of optimally investing in children is
identical in all three versions.

9 Our results would be modified if education started before child mortality is realized, since then
mortality reductions would lower the effective cost of education (see Kalemli-Ozcen 2002 and
Soares 2003). However, since most education occurs after age six, and most of child mortality
is concentrated at the youngest ages, quantitatively this effect is bound to be small.

10 If we assumed that some of the costs were in terms of goods, the total cost of children would
decline relative to income as wages grow, leading to higher fertility than in the case of time
costs.

11 Notice that the original costs of p ¼ 1=12 and q ¼ 5=12 are divided by the total wage
wþ wh ¼ 14, since they are now interpreted as a time cost.

12 To achieve this, w has to increase by a factor of 3.05, which is smaller than the observed
increase in real wages over the same period.

13 This result is based on two assumptions: homothetic preferences, and proportionality of wages
and the cost of children.
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